
How Secure Are
Commercial RISC-V
CPUs?

Lukas Gerlach, Fabian Thomas | PhD Students @ CISPA (Germany)

2

2

2

2

2

2

2

RISC-V: A Clean Slate?

Can we design a secure
architecture from the start or will
we repeat the same mistakes?

3

CPU Vulnerability Classes

Side Channels CPU Bugs Transient
Execution

4

CPU Vulnerability Classes

Side Channels CPU Bugs Transient
Execution

4

Side Channels: RSA Square-and-Multiply

• d is secret

• Multiplication ⇐⇒ bit=1

• How to leak?

func exp_mod(C, d, n): /* M=C^d mod n */

x = C

for bit in d: /* MSB -first */

x = x * x /* Square */

if bit == 1:

x = x * C /* Multiply */

return x % n

5

Side Channels: RSA Square-and-Multiply

• d is secret

• Multiplication ⇐⇒ bit=1

• How to leak?

func exp_mod(C, d, n): /* M=C^d mod n */

x = C

for bit in d: /* MSB -first */

x = x * x /* Square */

if bit == 1:

x = x * C /* Multiply */

return x % n

5

Side Channels: RSA Square-and-Multiply

• d is secret

• Multiplication ⇐⇒ bit=1

• How to leak?

func exp_mod(C, d, n): /* M=C^d mod n */

x = C

for bit in d: /* MSB -first */

x = x * x /* Square */

if bit == 1:

x = x * C /* Multiply */

return x % n

5

Side Channels: RSA Square-and-Multiply

• d is secret

• Multiplication ⇐⇒ bit=1

• How to leak?

func exp_mod(C, d, n): /* M=C^d mod n */

x = C

for bit in d: /* MSB -first */

x = x * x /* Square */

if bit == 1:

x = x * C /* Multiply */

return x % n

5

Flush+Reload

Attacker Victim

Shared Library

flush

access
access

6

Flush+Reload

Attacker Victim

Shared Library

flush

access
accessShared Library

ca
ch

ed
cach

ed

6

Flush+Reload

Attacker Victim

Shared Library

flushflush

access
accessShared Library

6

Flush+Reload

Attacker Victim

Shared Library

flushflush

access
access

6

Flush+Reload

Attacker Victim

Shared Library

flush

access
accessaccess

6

Flush+Reload

Attacker Victim

Shared Library

flush

access
accessaccessShared Library

6

Flush+Reload

Attacker Victim

Shared Library

flush

accessaccess
accessShared Library

6

Flush+Reload

Attacker Victim

Shared Library

flush

accessaccess
accessShared Library

vs

Victim accessed
(fast)

Victim did not access
(slow)

6

Accurate Timers?

Architectural timers

rdcycle hardware cycles
rdtime platform time
rdinstret retired instructions

High resolution, available in user
space on many cores

7

Cache Maintenance?

• No cache maintenance in base ISA

→ Only fences

Vendor-specific cache operations

T-Head Cores:

• Unprivileged D-Cache flush by virtual address (like clflush)

• fence.i flushes entire I-Cache

8

Cache Maintenance?

• No cache maintenance in base ISA

→ Only fences

Vendor-specific cache operations

T-Head Cores:

• Unprivileged D-Cache flush by virtual address (like clflush)

• fence.i flushes entire I-Cache

8

AES T-Table (x86)

Plaintext byte
00 40 80 c0 f0

C
ac

h
e

lin
e

0

4

8

12

15

9

AES T-Table (RISC-V, C906)

Plaintext byte
00 40 80 c0 f0

C
ac

h
e

lin
e

0

4

8

12

15

10

CycleDrift

rdcycle vs rdinstret

CPU cycles and retired instructions can differ

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

rdcycle

xor xor div xor xor div xor

+1 +1 +1 +1 +1 +1 +1

rdinstret

11

CycleDrift

rdcycle vs rdinstret

CPU cycles and retired instructions can differ

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

rdcycle

xor xor div xor xor div xor

+1 +1 +1 +1 +1 +1 +1

rdinstret

11

CycleDrift

Drift between rdcycle and rdinstret leaks information about executed
instructions (including from the kernel)

5 10 15 20 25 30

−5 · 106
0

5 · 106

Observation

∆
In

st
r.

/s

12

Takeaways

[Accurate Timers

• ISA exposes rdcycle, rdinstret to user space

• Enables CycleDrift, precise cache timing

✓ Linux now disables user-space access on RISC-V

å Cache Maintenance

• fence.i is unprivileged and flushes the entire I-Cache

• T-Head adds unprivileged D-Cache flush by virtual address (like
clflush)

• Enables Flush+Reload on I-Cache and D-Cache.

13

Takeaways

[Accurate Timers

• ISA exposes rdcycle, rdinstret to user space

• Enables CycleDrift, precise cache timing

✓ Linux now disables user-space access on RISC-V

å Cache Maintenance

• fence.i is unprivileged and flushes the entire I-Cache

• T-Head adds unprivileged D-Cache flush by virtual address (like
clflush)

• Enables Flush+Reload on I-Cache and D-Cache.

13

CPU Vulnerability Classes

Side Channels CPU Bugs Transient
Execution

14

CPU Vulnerability Classes

Side Channels CPU Bugs Transient
Execution

14

Differential CPU Fuzzing

01011010011110100101

a=3
b=7

a=3
b=7

01001010010101010101

a=21
b=2

a=21
b=2

10101010010101101111

a=34
b=9

a=34
b=9

00000001101010100101

a=42
b=5

a=142
b=5

15

Differential CPU Fuzzing

01011010011110100101

a=3
b=7

a=3
b=7

01001010010101010101

a=21
b=2

a=21
b=2

10101010010101101111

a=34
b=9

a=34
b=9

00000001101010100101

a=42
b=5

a=142
b=5

15

Differential CPU Fuzzing

01011010011110100101

a=3
b=7

a=3
b=7

01001010010101010101

a=21
b=2

a=21
b=2

10101010010101101111

a=34
b=9

a=34
b=9

00000001101010100101

a=42
b=5

a=142
b=5

15

Differential CPU Fuzzing

01011010011110100101

a=3
b=7

a=3
b=7

01001010010101010101

a=21
b=2

a=21
b=2

10101010010101101111

a=34
b=9

a=34
b=9

00000001101010100101

a=42
b=5

a=142
b=5

15

Differential CPU Fuzzing

01011010011110100101

a=3
b=7

a=3
b=7

01001010010101010101

a=21
b=2

a=21
b=2

10101010010101101111

a=34
b=9

a=34
b=9

00000001101010100101

a=42
b=5

a=142
b=5

15

Differential CPU Fuzzing

01011010011110100101

a=3
b=7

a=3
b=7

01001010010101010101

a=21
b=2

a=21
b=2

10101010010101101111

a=34
b=9

a=34
b=9

00000001101010100101

a=42
b=5

a=142
b=5

15

Intel F00F Bug

A single (invalid) instruction deadlocked the CPU

16

Halt and Catch Fire (C906)

th.lbib t0, (t0), 0, 0
frcsr t0
li t0, 0

CPU just hangs

17

Halt and Catch Fire (C906)

th.lbib t0, (t0), 0, 0
frcsr t0
li t0, 0

CPU just hangs

17

Halt and Catch Fire (C906)

th.lbib t0, (t0), 0, 0
frcsr t0
li t0, 0

Synopsis
Load indexed byte, increment address before loading.

Mnemonic
th.lbib rd, (rs1), imm5, imm2

Description
This instruction increments the value in rs1 by
(sign_extend(imm5) « imm2) and writes the result back to
rs1. After the increment of rs1, this instruction loads a
sign extended 8-bit value into the GP register rd from the
(incremented) address rs1.

The encoding of this instruction with equal rd and rs1 is
reserved.

18

Halt and Catch Fire (C906)

th.lbib t0, (t0), 0, 0
frcsr t0
li t0, 0

Synopsis
Load indexed byte, increment address before loading.

Mnemonic
th.lbib rd, (rs1), imm5, imm2

Description
This instruction increments the value in rs1 by
(sign_extend(imm5) « imm2) and writes the result back to
rs1. After the increment of rs1, this instruction loads a
sign extended 8-bit value into the GP register rd from the
(incremented) address rs1.

The encoding of this instruction with equal rd and rs1 is
reserved.

18

Simulator Verification

* Error: There is no instructions retired in the last 50000 cycles! *

* Simulation Fail and Finished! *

19

Simulator Verification

* Error: There is no instructions retired in the last 50000 cycles! *

* Simulation Fail and Finished! *

19

Other Cores?

.fill 1, 4, 0x20b00087

T-Head C908

.fill 1, 4, 0xe0815407

SpacemiT X60

20

Other Cores?

.fill 1, 4, 0x20b00087

T-Head C908

.fill 1, 4, 0xe0815407

SpacemiT X60

20

Mitigation Options

; C908/X60 DoS

• Disable V extension in kernel

• Prevents denial-of-service on
C908/X60

l Performance loss

l Breaks vector-dependent software

. C906 DoS

• T-Head vendor extension cannot
be disabled

• “The th.sxstatus.THEADISAEE bit is
not expected to be cleared. The
behavior of clearing this bit is
undefined”.

. No known mitigation

21

Mitigation Options

; C908/X60 DoS

• Disable V extension in kernel

• Prevents denial-of-service on
C908/X60

l Performance loss

l Breaks vector-dependent software

. C906 DoS

• T-Head vendor extension cannot
be disabled

• “The th.sxstatus.THEADISAEE bit is
not expected to be cleared. The
behavior of clearing this bit is
undefined”.

. No known mitigation

21

RISC-V Vector Instructions

vse128.v v0, 0(t0)

0x1000 RISC-V␣is␣a␣super␣cool␣CPU␣architecture!

t0 v0 v1 v2

0x1000

RISC-V␣is␣a␣super␣cool␣CPU␣architecture!

22

RISC-V Vector Instructions

vse128.v v0, 0(t0)

0x1000 RISC-V␣is␣a␣super␣cool␣CPU␣architecture!

t0 v0 v1 v2

0x1000

RISC-V␣is␣a␣supe

r␣cool␣CPU␣architecture!

22

RISC-V Vector Instructions

vse128.v v0, 0(t0)

0x1000 RISC-V␣is␣a␣super␣cool␣CPU␣architecture!

t0 v0 v1 v2

0x1000

RISC-V␣is␣a␣super␣cool␣CPU␣archi

tecture!

22

RISC-V Vector Instructions

vse128.v v0, 0(t0)

0x1000 RISC-V␣is␣a␣super␣cool␣CPU␣architecture!

t0 v0 v1 v2

0x1000

RISC-V␣is␣a␣super␣cool␣CPU␣architecture!

22

RISC-V Flawed Vector Instruction (C910)

0x1000 R I S C - V

t0 v0 v1 v2 v3 v4 v5

0x1000

physical F O S D E M

vse128.v v0, 0(t0)

23

RISC-V Flawed Vector Instruction (C910)

0x1000 R I S C - V

t0 v0 v1 v2 v3 v4 v5

0x1000

physical O S D E M

vse128.v v0, 0(t0)

V

23

RISC-V Flawed Vector Instruction (C910)

0x1000 R I S C - V

t0 v0 v1 v2 v3 v4 v5

0x1000

physical O S D E M

vse128.v v0, 0(t0)

R

23

RISC-V Flawed Vector Instruction (C910)

0x1000 R I S C - V

t0 v0 v1 v2 v3 v4 v5

0x1000

physical O S D E M

vse128.v v0, 0(t0)

I

23

RISC-V Flawed Vector Instruction (C910)

0x1000 R I S C - V

t0 v0 v1 v2 v3 v4 v5

0x1000

physical O S D E M

vse128.v v0, 0(t0)

S

23

RISC-V Flawed Vector Instruction (C910)

0x1000 R I S C - V

t0 v0 v1 v2 v3 v4 v5

0x1000

physical O S D E M

vse128.v v0, 0(t0)

C

23

RISC-V Flawed Vector Instruction (C910)

0x1000 R I S C - V

t0 v0 v1 v2 v3 v4 v5

0x1000

physical O S D E M

vse128.v v0, 0(t0)

-

23

RISC-V Flawed Vector Instruction (C910)

0x1000 R I S C - V

t0 v0 v1 v2 v3 v4 v5

0x1000

physical O S D E M

vse128.v v0, 0(t0)

V

23

GhostWrite: Circumventing Virtual Memory

Normal Memory Write

User-Mode Process

Virtual Address

Page Table

Physical Memory

sb t1, 0(t0)

Permissions
Checked

GhostWrite

User-Mode Process

Physical Memory

vse128.v v0, 0(t0)

24

GhostWrite: Circumventing Virtual Memory

Normal Memory Write

User-Mode Process

Virtual Address

Page Table

Physical Memory

sb t1, 0(t0)

Permissions
Checked

GhostWrite

User-Mode Process

Physical Memory

vse128.v v0, 0(t0)

24

GhostWrite Exploitation

Rewrite page tables Overwrite kernel

Modify M-mode firmware Break trusted execution

25

GhostWrite Exploitation

Rewrite page tables Overwrite kernel

Modify M-mode firmware Break trusted execution

25

GhostWrite Mitigation Options

; Disable Vector Extension

• Disable V extension in kernel

• Blocks GhostWrite

l Performance loss

l No software relying on V

l Requires trusted kernel

> Replace CPU

• Fix the bug in a new CPU revision

• Fixes GhostWrite

l Expensive and slow to deploy

l Requires hardware replacement

m Only real fix

Trade off: short-term software band aid (disable V) versus long-term
architectural fix (new CPU revision).

27

GhostWrite Mitigation Options

; Disable Vector Extension

• Disable V extension in kernel

• Blocks GhostWrite

l Performance loss

l No software relying on V

l Requires trusted kernel

> Replace CPU

• Fix the bug in a new CPU revision

• Fixes GhostWrite

l Expensive and slow to deploy

l Requires hardware replacement

m Only real fix

Trade off: short-term software band aid (disable V) versus long-term
architectural fix (new CPU revision).

27

GhostWrite Mitigation Options

; Disable Vector Extension

• Disable V extension in kernel

• Blocks GhostWrite

l Performance loss

l No software relying on V

l Requires trusted kernel

> Replace CPU

• Fix the bug in a new CPU revision

• Fixes GhostWrite

l Expensive and slow to deploy

l Requires hardware replacement

m Only real fix

Trade off: short-term software band aid (disable V) versus long-term
architectural fix (new CPU revision).

27

GhostWrite Mitigation Options

; Disable Vector Extension

• Disable V extension in kernel

• Blocks GhostWrite

l Performance loss

l No software relying on V

l Requires trusted kernel

> Replace CPU

• Fix the bug in a new CPU revision

• Fixes GhostWrite

l Expensive and slow to deploy

l Requires hardware replacement

m Only real fix

Trade off: short-term software band aid (disable V) versus long-term
architectural fix (new CPU revision).

27

Patterns From our Findings

q Limited DV Scrutiny

• Hardware ̸= Software → DV is critical

• Differential testing across vendors

¨ High Diversity

• Implement only ratified extensions

• Use vendor extensions carefully

• Mandate specific behavior in ISA

Ô Unconfigurable Hardware

• Features should have kill switches

• Instruction hooking mechanism

{ No Update Path

• Microcode or similar mechanism

• Even if microcode adds complexity

• We argue: Increases security

28

Patterns From our Findings

q Limited DV Scrutiny

• Hardware ̸= Software → DV is critical

• Differential testing across vendors

¨ High Diversity

• Implement only ratified extensions

• Use vendor extensions carefully

• Mandate specific behavior in ISA

Ô Unconfigurable Hardware

• Features should have kill switches

• Instruction hooking mechanism

{ No Update Path

• Microcode or similar mechanism

• Even if microcode adds complexity

• We argue: Increases security

28

Patterns From our Findings

q Limited DV Scrutiny

• Hardware ̸= Software → DV is critical

• Differential testing across vendors

¨ High Diversity

• Implement only ratified extensions

• Use vendor extensions carefully

• Mandate specific behavior in ISA

Ô Unconfigurable Hardware

• Features should have kill switches

• Instruction hooking mechanism

{ No Update Path

• Microcode or similar mechanism

• Even if microcode adds complexity

• We argue: Increases security

28

Patterns From our Findings

q Limited DV Scrutiny

• Hardware ̸= Software → DV is critical

• Differential testing across vendors

¨ High Diversity

• Implement only ratified extensions

• Use vendor extensions carefully

• Mandate specific behavior in ISA

Ô Unconfigurable Hardware

• Features should have kill switches

• Instruction hooking mechanism

{ No Update Path

• Microcode or similar mechanism

• Even if microcode adds complexity

• We argue: Increases security

28

CPU Vulnerability Classes

Side Channels CPU Bugs Transient
Execution

29

CPU Vulnerability Classes

Side Channels CPU Bugs Transient
Execution

29

Spectre on RISC-V: Implications

Out-of-order RISC-V CPUs are vulnerable to Spectre

Kernel lacks mitigations that x86 and ARM have had since 2018

31

No Speculation Barriers

x86

LFENCE

Standardized

ARM

CSDB / DSB

Standardized

RISC-V

Nothing

No dedicated fence

• BPF JIT has no instruction to emit → emits no-op

• Workaround: CSR reads (rdtime) empirically stop speculation

• But: undocumented behavior, not guaranteed

32

No Speculation Barriers

x86

LFENCE

Standardized

ARM

CSDB / DSB

Standardized

RISC-V

Nothing

No dedicated fence

• BPF JIT has no instruction to emit → emits no-op

• Workaround: CSR reads (rdtime) empirically stop speculation

• But: undocumented behavior, not guaranteed

32

Kernel Patches

Unprotected kernel paths on RISC-V

• Syscall dispatch – no array_index_nospec

• User memory access – no pointer masking

• BPF – JIT does not emmit speculation barrier

• Futex operations

Patches submitted – some already merged into
Linux mainline

33

Kernel Patches

Unprotected kernel paths on RISC-V

• Syscall dispatch – no array_index_nospec

• User memory access – no pointer masking

• BPF – JIT does not emmit speculation barrier

• Futex operations

Patches submitted – some already merged into
Linux mainline

33

What we need to mitigate this

• Standardized serializing fence instruction
needed

• Kernel needs fine grained settings for
mitigations

• Compiler needs support for retpoline
equivalent

• Vendors need to document speculative
behavior of CPUs

34

q What goes wrong

• Unprivileged timers &
cache maintenance

• Vendor extensions,
non-ratified extensions

• Bugs: GhostWrite, DoS

• Missing kill switches, no
update path

• Transient execution

35

q What goes wrong

• Unprivileged timers &
cache maintenance

• Vendor extensions,
non-ratified extensions

• Bugs: GhostWrite, DoS

• Missing kill switches, no
update path

• Transient execution

{ What we suggest

• Privileged cache
maintenance

• Coarse user-space timers

• Ratified extensions only

• Kill switches

• Instruction hooking/
update mechanism

• Standardized serializing
fence

35

q What goes wrong

• Unprivileged timers &
cache maintenance

• Vendor extensions,
non-ratified extensions

• Bugs: GhostWrite, DoS

• Missing kill switches, no
update path

• Transient execution

{ What we suggest

• Privileged cache
maintenance

• Coarse user-space timers

• Ratified extensions only

• Kill switches

• Instruction hooking/
update mechanism

• Standardized serializing
fence

⋆ What we wish for

• Documentation/Source
code

• Unified perf interface

• Reproducible
builds/kernel headers

• mvendorid/marchid DB

35

q What goes wrong

• Unprivileged timers &
cache maintenance

• Vendor extensions,
non-ratified extensions

• Bugs: GhostWrite, DoS

• Missing kill switches, no
update path

• Transient execution

{ What we suggest

• Privileged cache
maintenance

• Coarse user-space timers

• Ratified extensions only

• Kill switches

• Instruction hooking/
update mechanism

• Standardized serializing
fence

⋆ What we wish for

• Documentation/Source
code

• Unified perf interface

• Reproducible
builds/kernel headers

• mvendorid/marchid DB

github.com/cispa/RISCover

github.com/cispa/Security-RISC

35

Security Problem or Not?

CVE-2025-20103 (DoS)

Insufficient resource pool in the
core management mechanism for
some Intel Processors may allow an
authenticated user to potentially
enable denial of service via local
access.

6.5 Medium

CVE-2017-5754 (Meltdown)

Systems with microprocessors
utilizing speculative execution and
indirect branch prediction may
allow unauthorized disclosure of
information to an attacker with
local user access via a side-channel
analysis of the data cache.

5.6 Medium

36

Security Problem or Not?

CVE-2025-20103 (DoS)

Insufficient resource pool in the
core management mechanism for
some Intel Processors may allow an
authenticated user to potentially
enable denial of service via local
access.

6.5 Medium

CVE-2017-5754 (Meltdown)

Systems with microprocessors
utilizing speculative execution and
indirect branch prediction may
allow unauthorized disclosure of
information to an attacker with
local user access via a side-channel
analysis of the data cache.

5.6 Medium

36

Simple, but Effective

W Small tests. Big failures.

Real bugs found in seconds or minutes across diverse RISC-V cores.

ÿ

Privilege Escalation
C910, C920
<1 second

X

Denial-of-Service
C906, C908, X60

2–50 minutes

.

Architectural Bugs
U54, P550, C906, C908, C910

<2 minutes

q

Simulator Breakage
QEMU segfaults

<30 seconds37

