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Abstract

Modern CPUs implement complex Instruction Set Architec-
tures (ISAs), yet machine-readable semantics are often incom-
plete. Worse, many CPUs support undocumented instructions,
i.e., bitstrings that execute on hardware but are absent from
specifications, leading to potential security vulnerabilities.

In this paper, we present InstrSem, an ISA-agnostic, modu-
lar, fully automated approach to infer instruction semantics
from execution behavior alone and provide semantics that are
understandable by both, humans and machines. Starting from
a raw encoding, InstrSem executes it under systematically
varied architectural states and synthesizes compact mathemat-
ical functions that explain every changed state component.
By mutating encoding bits and correlating induced behav-
ioral changes with bit positions, InstrSem then generalizes
from a single encoding to a full instruction, recovering reg-
ister and immediate fields. In contrast to prior work focus-
ing on a single ISA, InstrSem is generic. It requires only a
lightweight ISA model and a per-architecture user-space run-
ner and supports fixed- and variable-length encodings (RISC
and CISC), memory accesses, and conditional behavior. We
evaluate InstrSem on RV64I, AArch64, and LA64, and addi-
tionally showcase CISC applicability on a Logitech macro
language and partial x86-64. InstrSem automatically recov-
ers correct semantics for over 97.81 % of the RV64I base
instruction set, and 136 instructions covering 1 009 055 744
instruction encodings within 77 h for the LA64 instruction
set. InstrSem discovers undocumented vector instructions,
inconsistencies between QEMU and Loongson hardware, and
instructions that crash QEMU. InstrSem enables scalable
recovery of instruction semantics, substantially automating
reverse engineering across commodity and niche targets and
strengthening the foundations for emulation, verification, and
security analysis. With minimal requirements to support new
architectures, its modular design, and human-readable output,
InstrSem can aid future security analysis.

1 Introduction

Modern CPUs implement highly complex and evolving ISAs.
These ISAs define how software can interact with hard-
ware, specifying instruction formats, encodings, and seman-
tics. While ISA manuals often describe the behavior of stan-
dard instructions in a human-readable form, they typically
lack formal, machine-readable semantic specifications [21].
This absence hinders automated analysis, tool generation, and
formal reasoning. Moreover, ISA documentation may not
reflect the true behavior of hardware: Many CPUs include
undocumented instruction encodings – bitstrings that are exe-
cutable but not described in any specification [10, 11, 32, 33].

However, such undocumented encodings matter for secu-
rity. These instructions are invisible to disassemblers, static
analyzers, and formal verification tools. Moreover, ISA-aware
fuzzers typically ignore them [31]. Recent research has shown
that undocumented instructions have enabled privilege esca-
lation [12] on x86, denial-of-service on x86 [28] and RISC-
V [33], and bypassed memory protections on RISC-V [33].
Still, despite the critical security impact on non-x86 ISAs,
previous work primarily focused on x86 [7, 21], where vast
human effort was spent on formalizing instruction semantics.

Unfortunately, recovering the semantics of undocumented
instructions is a difficult and largely manual task. What is
missing is a generic and modular way to recover semantics
across architectures, without having to tailor the approach
to a specific ISA. Existing techniques address only parts of
the problem. Fuzzing-style discovery identifies encodings
that execute without crashing [10, 11, 23, 32, 39], but cannot
explain what they do. Program-synthesis approaches, such as
STRATA [21] and libLISA [7] infer formal semantics for x86
instructions but rely on hundreds of ISA-specific templates
or complex setups which are hard to port. Recent reverse-
engineering efforts on RISC-style instruction sets, such as
AMD microcode [13], Intel ME [14], VIA C3 [12], NVIDIA
GPUs [19], and keyboard macros [34], required vast manual
efforts even for subsets of the ISA. A practical solution must



be able to generically add a new architecture, whether that is
a commodity ISA or a proprietary macro language.

In this work, we present an ISA-agnostic approach that
automates semantic reverse engineering from execution be-
havior alone and is explicitly designed for extensibility and
modularity. We start from a raw, unknown instruction en-
coding and infer a precise, machine- and human-readable
description of its behavior, and then generalize from that sin-
gle encoding to a full instruction with operands. We state two
research questions:

Can we automatically infer the semantics of arbitrary in-
struction encodings without relying on existing documenta-
tion or templates? Can we generalize individual instruction
encodings into a formal description of how instructions map
bits to behavior?

We answer these questions with a black-box approach.
Given a single instruction encoding and a description of the
architectural state (e.g., registers, memory), we execute the
encoding under different architectural inputs and record the
resulting outputs. We then synthesize compact mathemati-
cal functions that explain each changed component of the
state. These functions form the instruction encoding’s seman-
tics: they describe how outputs (e.g., destination registers,
memory) depend on inputs (e.g., source operands, immediate
values). To generalize to instruction semantics, we mutate the
encoding bits and correlate induced semantic changes with
specific bit positions to recover which fields encode registers
and immediates. This requires no disassembler, specification,
or predefined architecture-dependent instruction templates,
and works fully automated with user-space runners. Our as-
sumptions are minimal: a runner that can execute an encoding
and capture the architecturally visible state, and a lightweight
ISA model that lists state component names, bit-widths, and
basic constraints (e.g., canonical addresses or a zero register).

We implement this approach in a modular prototype, In-
strSem. InstrSem is ISA-agnostic by design, requiring only
the minimal ISA model and a per-architecture runner. This
modular interface makes it easy to support new targets, as
only a runner and a minimal model need to be provided. In-
strSem supports fixed- and variable-length encodings and
thus applies to both RISC and CISC ISAs. It supports instruc-
tions that access memory and handles conditional behavior
and function synthesis over a generic set of integer bit-vector
operations. We evaluate InstrSem on three widely used real-
world ISAs: RISC-V (RV64I), ARMv8-A (AArch64), and
LoongArch64 (LA64) and additionally showcase CISC appli-
cability on the Logitech macro language and partial x86-64.
On documented instructions, it automatically recovers cor-
rect semantics for over 97.81 % of the RV64I base instruction
set. When applied to the entire LA64 encoding space, In-
strSem correctly reverse-engineers 136 instructions covering
1 009 055 744 instruction encodings within 77 h, discovers
undocumented vector instructions, inconsistencies between
QEMU and Loongson hardware, and instructions that crash

QEMU, affecting sandboxing security. InstrSem further un-
covers 305 undocumented instructions on the SiFive P550 and
automatically reverse-engineers Apple’s proprietary Mul53
extension. With only slight modifications to the RISC-V run-
ner, InstrSem can automatically reverse-engineer the seman-
tics of GhostWrite [33] and generalize it into an instruction
covering 65 536 encodings, demonstrating it can be a useful
tool for security analysis. For the Logitech macro language,
we successfully recover the semantics of 13 instructions. Our
results show that a large portion of the reverse engineering
process for instruction semantics can be fully automated, even
for undocumented or non-standard instruction sets.

Our contributions can be summarized as follows:
1. We introduce a generic, automated approach to infer in-

struction encoding semantics from input-output behavior
alone, without templates or documentation.

2. We propose an algorithm to recover instruction semantics
by mapping instruction encoding bits to semantics.

3. We present InstrSem, a modular implementation of this
approach that supports multiple ISAs, and makes it easy
to add new architectures, including more obscure archi-
tectures such as macro languages.

4. We evaluate InstrSem on RV64I, AArch64, and LA64, re-
covering semantics for thousands of instruction encodings
and discovering undocumented behaviors in commodity
CPUs from Apple, SiFive, and Loongson.

5. We demonstrate how InstrSem can aid security analysis
by reversing GhostWrite using InstrSem.

Responsible Disclosure. We reported the QEMU crashes
and QEMU-only instructions to QEMU. The issues were
addressed and fixed.
Availability. We will open-source InstrSem upon acceptance
of the paper and provide it as an artifact for the review process.

2 Background

2.1 Instruction Set Architectures
An Instruction Set Architecture (ISA) defines the interface
between software and hardware [20]. It specifies the set of
instructions a CPU understands, how these instructions are
encoded as bitstrings, and how they affect the architectural
state, such as registers and memory. Each instruction is a fixed-
width bitstring, with specific fields identifying the operation
(e.g., ADD) and its operands (e.g., registers or immediates).

While ISA manuals provide high-level descriptions of
these instructions, they are usually written for human readers.
Machine-readable semantics that precisely define the behavior
of instructions are rarely available. Moreover, CPUs often im-
plement undocumented instructions: bitstrings that the CPU
accepts and executes, but that are not described in the official
ISA documentation. Such instructions may have legitimate
purposes (e.g., testing, debugging, vendor extensions) but can
also pose security risks.



The mapping from an instruction’s bitstring to its functional
behavior is known as its instruction encoding. For example,
an instruction that adds two registers and stores the result in
a third might be encoded with fields specifying the source
and destination registers and an opcode identifying the opera-
tion. An architectural state is a snapshot of the CPU’s visible
state. The architectural state is an abstraction of the microar-
chitectural state, comprising internal CPU states, e.g., cache
state or physical register files. The semantics of an instruction
describe how it transforms an architectural state.
Instructions vs. Instruction Encodings. This paper distin-
guishes between a concrete instruction encoding (or encod-
ing) and a more general instruction. The instruction encoding
is one instance of the instruction with specific register and
immediate values. The instruction describes a family of encod-
ings sharing the same format and semantics, with variations
based on operand values. For example, the encoding is addi
$r0, $r0, 17, with specific fields for the registers and im-
mediates, while the instruction contains “placeholders” for
these fields (addi rega, regb, imm12).

2.2 Constraint Solving and Z3

Constraint solvers, such as Microsoft’s Z3 [9], are indispens-
able tools for many problems in planning [17, 37], resource
allocation [1], and network analysis [3]. These solvers take
logical formulas over bit vectors (fixed-width binary values)
and determine whether assignments (known as models) exist
that satisfy a given specification. Z3 can verify whether a con-
straint can be fulfilled and find values for symbolic constants
that satisfy given constraints. In IT security, constraint solvers
have successfully been utilized for symbolic execution and
automatic exploit generation [5, 38].

2.3 CPU Vulnerabilities

With the growing complexity of CPUs, researchers have un-
covered numerous attacks targeting hardware instead of soft-
ware bugs. One class of such attacks are microarchitectural
side channels that can leak secrets across security bound-
aries [6, 15, 25, 30]. With Meltdown [24] and Spectre [22],
a new class of CPU vulnerabilities called transient execu-
tion attacks was discovered. Those attacks target side effects
of transient instructions that are erroneously executed due
to out-of-order or speculative execution. Since their incep-
tion, a multitude of transient execution attacks has been un-
veiled [4, 22, 24, 29, 35, 36]. However, recent research has dis-
covered a growing number of architectural bugs [2,28,33,40].
Such bugs do not require observing microarchitectural effects
through side channels but directly manifest in the architec-
turally observable state, e.g., malformed or undocumented
instructions affecting register or memory contents [28, 33].

3 Inferring Semantics Automatically

This section introduces our generic approach to automatically
infer the semantics of instruction encodings and generalize
them into instruction semantics. Section 3.1 briefly introduces
the general idea. Section 3.2 formally describes the primitives
used in our approach. Section 3.3 describes how encoding
semantics can be recovered. Section 3.4 shows how encod-
ing semantics can be generalized to instruction semantics.
Section 3.5 outlines implementation challenges to overcome.

3.1 Overview
At a high level, we infer an instruction encoding’s semantics
by executing an unknown encoding under different random-
ized architectural input states and observing the corresponding
outputs. For each component of the state that changes, we
attempt to synthesize a compact function that maps relevant
inputs to the observed output.

The central idea is that many instruction behaviors, such
as arithmetic, bitwise, or conditional operations, can be ex-
pressed with small, human-readable functions over a limited
set of inputs. If we can find such a function that consistently
predicts the output given the inputs, we assume it describes
the encoding’s semantics.

3.2 Primitives
Our approach relies on the primitives outlined in this section.
Architectural State and State Variables. An architectural
state is a collection of values that can influence the semantics
of an instruction. This state contains register values and the
memory state. As obtaining the complete architectural state
may be infeasible, our approach also works with a subset of
it. Formally, we describe an architectural state A as a set of
state variables. A state variable v is a tuple (name,value).
“name” describes the name of an architectural component
(e.g., register x5), and “value” denotes the current value. For
instance, Asample = {(x0,0),(x1,5),(x2,3),(address0,100),
(memory0,1823),(address1,200),(memory1,42)} describes
the architectural state of an architecture with three registers
and two memory regions. We use square brackets when refer-
ring to the value of a state variable of an architectural state.
Hence, Asample[x1] = 5 in the above example.
Output Function. An output function describes how a new
state variable that changes due to instruction encoding execu-
tion can be derived from the architectural state. Intuitively, it
describes how an output is calculated from a given architec-
tural input state. Formally, an output function f is a function
f : A 7→ N. For instance, fmovx1(A) = A[x1] describes the op-
eration of copying the value from register x1.
Encoding Semantics. Encoding semantics are a set of output
functions that describe how the architectural state changes on
instruction encoding execution. We omit functions for outputs



that do not change and assume an identity function. Formally,
encoding semantics are a set S of tuples (name, function).
“name” describes the name of a changing architectural com-
ponent, while “function” is an output function that describes
how the new value can be derived. We refer to the archi-
tectural state A′ that can be derived by applying all output
functions of S to the initial architectural state A using S(A):

A′ = S(A) :=
{{

(x, f (A)) ∃ f : (x, f ) ∈ S
(x,A[x]) otherwise

∣∣∣∣(x,_) ∈ A
}

Further, we refer to all occurrences of a specific register or
immediate using triangular brackets. Consider an instruction
encoding “example” that computes x2 = x1+x1 and zeroes x1.
This yields: Sexample = {(x1, f (A) = 0),(x2, f (A) = A[x1] +
A[x1])}, Sexample ⟨x1⟩= {x1,x1,x1} and Sexample ⟨0⟩= {0}.
Instruction Semantics. Instruction semantics generalize
encoding semantics to entire instructions. They map from
instruction encoding bitstrings to semantic descriptions. For-
mally, instruction semantics E are partial functions E : N→ S,
meaning that they are defined only for bitstrings that belong to
a specific instruction. For instance, the instruction semantics
below describe that the instruction bitstring 0b1010xxxx sets
the register encoded in the least significant 4 bit (xxxx) to ‘0’:

Ezero(i) =
{
{(xi%16, f (A) = 0)} (i≫ 4) = 0b1010
undefined otherwise

Runner. A runner is an architecture-specific execution har-
ness that takes an initial architectural state A and an instruction
encoding i, executes the encoding, and returns the resulting
state A′. It serves as an oracle for encoding semantics and pro-
vides the ground truth for their recovery. Formally, a runner
is a function R : A×N 7→ A.
ISA Model. An ISA model describes the relevant properties
of an ISA including the names and sizes of registers and how
registers and immediates can be represented in the instruction
bitstring (e.g., x3 as 00011).

3.3 Inferring Encoding Semantics
Under ideal conditions, we can identify the correct output
function for each output by eliminating incorrect candidates
through differential testing. For a given output name, we start
a set of possible output functions F . Our algorithm makes no
assumptions on how F is obtained. It only assumes that F is a
set of valid, distinct (i.e., ∀ f , f ′ ∈F : (∄A : f (A) ̸= f ′(A)) =⇒
f = f ′) output functions, and that a correct output function
for each state variable is contained. We repeatedly pick two
functions, f and f ′, from the candidate set F , find an input
state A where they differ, execute the instruction encoding on
A, and compare the actual output to the predictions from each
function. Any function that disagrees with the observed result
is removed from the candidate set. This process continues
until only one function remains.

If F initially contains the correct function, the functions
are all distinguishable, and we can always find a distinguish-
ing input, this approach is guaranteed to identify the correct
semantics. Algorithm 1 formalizes this procedure.

Our approach relies on one important assumption: Output
functions of instruction encodings are usually mathematical
operations that can be described with a compact mathematical
description. Identifying the correct mathematical operation of
an output function is feasible by covering only a tiny fraction
of the possible architectural states. This intuitively holds if
the covert architectural input and output states suffice to rule
out all but one mathematical operation that an output function
could implement.

Note that using a runner R and executing an instruction en-
coding i with all possible architectural states A and recording
A′ = R(A, i) could trivially recover the encoding semantics S.
However, even for architectures where the state solely con-
sists of eight 32-bit registers and no memory, this would mean
executing the encoding under test 2256 times and recovering
a table with 2256 rows, which is infeasible in terms of compu-
tational power and memory.
Formal Description. Formally, our approach relies on a set
of possible output functions F where no two functions of F
are semantically equivalent (∀ f , f ′ ∈ F : f ̸= f ′ =⇒ ∃A :
f (A) ̸= f ′(A)). We assume a function correctly describing
each output function of an instruction encoding i is contained
in F . If these assumptions hold and a runner R is available, S
can be recovered. This is done using the runner R on architec-
tural states A where at least two possible functions disagree for
an output name. Only the functions f that correctly describe
how to derive name from A, i.e., f (A, i) = R(A, i)[name], are
kept in the set of possible functions. This step is repeated
until only a single function for each output remains. Since we
assume that a correct output function exists in F , the set of
possible functions for an output is never empty. Further, as
all functions of F are distinct, there is always a state A where
f , f ′ ∈ F with f ̸= f ′ leads to f (A) ̸= f ′(A). Thus the set of
possible functions is reduced in each iteration. While identify-
ing such architectural states might not be straightforward, this
generic algorithm assumes it is possible. An implementation
could, for instance, rely on a SAT-solver for this. The set of
all recovered output functions for each output then describes
the encoding semantics. The pseudocode of this algorithm is
outlined in Algorithm 1.
Relaxed Algorithm. In practice, the assumptions of the ideal
algorithm (Algorithm 1) are difficult to guarantee. It is often
infeasible to determine whether two functions are semanti-
cally equivalent or to identify distinguishing inputs. Further-
more, many functions may behave identically across most
states. To overcome these issues, we implement a relaxed
algorithm based on randomized testing. Instead of searching
for differentiating inputs, we draw a fixed number of random
architectural states from a domain-specific distribution. These
samples are designed to expose edge cases such as overflows,



Algorithm 1: EncSem
Data: Set of possible output functions F , runner R,

output names O, instruction encoding i
Result: Encoding Semantics S
S← /0 ;
for name ∈ O do

Fname← F ;
while |Fname|> 1 do

f , f ′← choose_any(Fname);
A← f (A) ̸= f ′(A);
if f (A) ̸= R(A, i) then

remove f from Fname ;
end
if f ′(A) ̸= R(A, i) then

remove f ′ from Fname ;
end

end
S← S∪{(name,choose_only(Fname))} ;

end

sign transitions, and zero values. For each output, we keep
only the functions in F that match the observed outputs for
all sampled inputs. If multiple functions remain, we pick one
arbitrarily.

This heuristic approach trades completeness for scalabil-
ity and works effectively in practice, as shown in Section 5.
Algorithm 2 summarizes this algorithm.

While this algorithm cannot guarantee correctness, it signif-
icantly reduces computational costs and supports large-scale
analysis. Our evaluation shows that despite its heuristic nature,
it reliably recovers accurate encoding semantics for diverse
architectures and instruction sets.

3.4 Generalizing Encoding Semantics

Inferring the semantics of a single instruction encoding is
only the first step. Our ultimate goal is to generalize this in-
formation into a description of the entire instruction, i.e., to
understand how operand values (registers, immediate values)
are mapped into the instruction bitstring and vice versa. In
this section, we present an approach to generalize encoding
semantics S for an instruction encoding i into instruction se-
mantics E. This is done by determining which instruction
bits encode immediate values and register numbers used in an
output function. The algorithm allows us to identify a parame-
terized instruction format (e.g., add rega, regb, regc) and
define a single instruction that represents many instruction
encodings with similar behavior.

We again describe an idealized algorithm first and then
introduce a relaxed variant used in practice. The intuition is
simple: if modifying certain bits in the instruction bitstring
causes corresponding changes in the recovered semantics,

Algorithm 2: EncSemRelaxed
Data: Set of possible output functions F , runner R,

output names O, distribution of architectural
states D, instruction encoding i

Result: Encoding Semantics S
S← /0;
for name ∈ O do

Fname← F ;
for n times do

A← choose randomly from D;
for f ∈ Fname do

if f (A) ̸= R(A, i) then
remove f from Fname ;

end
end

end
add any (name, f ∈ Fname) to S;

end

then those bits are likely encoding operand values. For exam-
ple, if changing bits 10–14 results in a different destination
register in the recovered semantics, we assume bits 10–14
encode the destination register.

Ideal Generalization Algorithm. The generalization to in-
struction semantics relies on a mapping from instruction en-
codings to encoding semantics M : N 7→ S. Such mapping can
be computed lazily using the approach in Section 3.3. Given
an encoding i and an ISA model, the algorithm can generalize
the encoding semantics to instruction semantics. The algo-
rithm uses a set of known encapsulations Kknown which is ini-
tially empty. Such an encapsulation describes how an immedi-
ate or register is encoded in a subset of the instruction bitstring.
The algorithm also computes a set of possible encapsula-
tions Kpossible =

⋃
u∈U(s),b∈Enc(u,i){(b,x)|x ∈ P (s⟨u⟩) \ { /0}}

where U(s) denotes all registers and immediates used in s
and Enc(u, i) describes all possible substrings of i that can
encode u according to the ISA model. In each iteration of the
algorithm, one entry k in Kpossible is removed and checked
whether it actually encodes the register or immediate. The
helper function CheckEncoding in Algorithm 5 (Appendix A)
performs this checking. The algorithm computes all instruc-
tion encodings i′ and corresponding expected semantics s′

that are covered by the encapsulations Kpossible∪{k}. If the
actual semantics M(i′) always matches the predicted seman-
tics s′, the encapsulation k is added to Kknown. Otherwise,
it is discarded. This is repeated until Kpossible = /0. Finally,
instruction semantics constructed from Kknown are returned.
Since Kpossible is a finite set and one item is removed in each
iteration, the algorithm is guaranteed to terminate. The pseu-
docode of the algorithm is outlined in Algorithm 3. Further,
the semantics of all encodings covered by Kknown are checked



Algorithm 3: InstrSem
Data: Mapping from instruction encodings to

encoding semantics M, instruction encoding i
Result: Instruction Semantics E
Kknown← /0;
Kpossible← /0;
soriginal ←M(i) ;
for name ∈U(soriginal) do

for usages ∈ P (soriginal ⟨name⟩)\{ /0} do
for b ∈ Enc(name, i) do

add (b,usages) to Kpossible ;
end

end
for k ∈ Kpossible do

if CheckEncapsulation(Kknown∪{k},M) then
add k to Kknown ;

end
end

end
E← To_Semantics(Kknown) ;

for correctness in each iteration. Thus, the algorithm guaran-
tees that the resulting instruction semantics are correct.
Relaxed Algorithm. The algorithm above requires recover-
ing the encoding semantics of all instruction encodings of an
instruction before the semantics can be reported. While this is
necessary to ensure formal correctness, we propose a heuris-
tic approach that only tests a small subset of the instruction
encodings covered by the instruction. Intuitively, if some bits
of i correctly encode a few randomly chosen immediates or
registers, it is likely that these bits are actually used to encode
the immediate or register. Further, we also incorporate the
idea behind the relaxed algorithm for recovering encoding
semantics and do not compute M : N 7→ S but instead test the
expected encoding semantics s′ against randomly chosen ar-
chitectural input states A using the runner. If s′(A) = R(A, i′)
for all tested states, we assume s′ is correct. The pseudocode
of the relaxed algorithm is shown in Algorithm 4. With these
heuristic optimizations, the runtime of each iteration is sig-
nificantly reduced since only a fixed number of instruction
encodings is tested instead of all encodings covered by the
instruction. While this relaxed approach cannot guarantee
correctness, our empirical results (Section 5) show that it con-
sistently recovers accurate instruction semantics. In practice,
only a handful of samples per candidate are sufficient to vali-
date an operand mapping, provided that the architectural input
states are well-distributed.

3.5 Challenges for Implementation

While the previous sections outline a generic approach to
automatically reverse-engineer semantics of instruction en-

Algorithm 4: InstrSemRelaxed
Data: Set of possible output functions F , runner R,

output names O, distribution of architectural
states D, instruction encoding i, amount of
tested encodings ni, amount of architectural
states na

Result: Instruction Semantics E
Kknown← /0;
Kpossible← /0;
soriginal ← EncSemRelaxed(F,R,O,D, i) ;
for name ∈U(s) do

for usages ∈ P (soriginal ⟨name⟩)\{ /0} do
for b ∈ Enc(name, i) do

add (b,usages) to Kpossible ;
end

end
for k ∈ Kpossible do

if
CheckEncapsulationRelaxed(R,D,Kknown∪
{k},ni,na) then

add k to Kknown ;
end

end
end
E← To_Semantics(Kknown);

codings and cluster them into instruction semantics, the high
level of abstraction hides some challenges that must be over-
come when implementing our approach. In this section, we
outline these key challenges.

Challenge 1: Working with Memory. Apart from regis-
ters, the architectural state of most architectures consists of a
large memory region. While the whole memory address space
could, in principle, be modeled as a single register, the sheer
size of addressable memory makes this infeasible. Further,
instruction encodings usually only access a small portion of
memory based on an address. Thus, values in main mem-
ory should be represented as two registers: one storing the
address and one storing the value. The size of the register
storing the address should match the architecture’s pointer
size, while the size of the register storing the value should be
the size accessed by the encoding. An implementation of our
approach needs to determine the addresses and sizes of mem-
ory accesses. Further, the runner needs to be able to construct
memory mappings at arbitrary addresses with arbitrary values
of any size and to record their values after execution.

Challenge 2: Collecting Noise-free Samples. A runner
must be able to reliably execute instruction encodings under
arbitrary initial architectural states and record the complete ar-
chitectural state after execution. If a single register or memory
mapping is not set up correctly or is modified by the frame-



work code, the semantics of an encoding likely cannot be
recovered correctly.
Challenge 3: Efficiently computing and checking the Set
of Output Functions F . For our proposed algorithm to work,
F needs to contain all actual output functions of an instruction
encoding. However, a larger size of F increases the runtime
as more possible output functions have to be checked. An
implementation needs to find a good tradeoff between the
size of F and performance. Further, it is infeasible to check
a possible output function containing an immediate for each
possible value of the immediate by brute force. An imple-
mentation needs further optimizations to check each possible
output function efficiently.
Challenge 4: Dealing with Conditional Semantics. Condi-
tional semantics can be represented as output functions com-
bining simple mathematical operations. However, this entails
encoding the condition and both outcomes into a single func-
tion, inevitably growing the complexity of the function. With
more complex functions, the size of F immensely increases,
making it infeasible to enumerate. Thus, correctly recovering
conditional semantics might require additional optimizations.
Challenge 5: Providing a good Distribution. As described
in Section 3.3, our approach requires a distribution of ran-
dom initial architectural states that can efficiently distinguish
possible output functions in F . An implementation must use
domain knowledge of F to provide a good distribution.
Challenge 6: Dealing with SIMD and partial Registers.
Same Instruction Multiple Data (SIMD) [16] instructions of-
ten split one big architectural register into multiple logical
registers and operate on multiple logical registers simulta-
neously. Such a split is again possible but highly infeasible
to model as combinations of simple mathematical functions.
Similarly, some instructions only perform operations on parts
of the register (e.g., the lower 32-bit of a 64-bit register). Thus,
special care is needed to recover the semantics of SIMD in-
structions, and optimizations for instructions targeting only
part of a register can be made.

Each of these challenges affects the design and optimiza-
tion of our implementation, which we describe in Section 4.

4 Implementation: InstrSem

In this section, we describe InstrSem, our proof-of-concept im-
plementation of our approach described in Section 3. InstrSem
is modular, extensible, and designed to recover encoding se-
mantics and generalize them into instruction semantics across
multiple ISAs. InstrSem is implemented in C, Python, and
minimal architecture-specific assembly and supports reverse
engineering for 64-bit LoongArch, AArch64, and RISC-V.
InstrSem works with instructions accessing memory and fea-
tures a plethora of optimizations to make reversing feasible.
InstrSem is split in two parts: The reverser (Section 4.1),
which recovers encoding semantics, and the clusterer (Sec-
tion 4.2), which generalizes them into instruction semantics.

ReverserRunner
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ISA Model
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Figure 1: Overview of InstrSem’s reversing: The reverser
is instantiated with an architecture-specific ISA model de-
scribing register names, sizes, encodings, and constraints and
a runner able to execute and collect arbitrary architectural
states. Whenever the reverser is fed an instruction encoding,
it detects changing outputs and their corresponding inputs.
For each input-output pair, the reverser collects samples and
feeds them to the solver. The solver responds with an output
function correctly describing the mapping from inputs to out-
puts for all samples. When output functions for all outputs
are found, they are returned as encoding semantic.

Section 4.3 describes how we tackle the challenges outlined
in Section 3.5 and reduce the runtime of InstrSem.

4.1 Reverser

Figure 1 shows how the reverser works: it takes a raw in-
struction encoding, uses the architecture-specific runner to
execute it under randomized architectural states, and synthe-
sizes output functions that explain changes in the state. These
output functions form the encoding’s semantics. The reverser
consists of multiple parts that all run in userspace:
Runner. The runner is responsible for executing instruction
encodings under an arbitrary given architectural input state
and recording the resulting architectural state, including regis-
ter and memory content. It is written in architecture-specific
assembly and minimal C and supports user-mode execution.
Solver. The solver is responsible for inferring output func-
tions and constraints from input-output samples and creating
random input samples under constraints. It contains code to
generate the set of possible output functions F from a list
of simple mathematical operations (Table 1) and an imple-
mentation to efficiently check F against a list of input-output
samples. Further, the solver is responsible for efficiently cre-
ating random architectural input states likely to trigger corner
cases of functions in F and satisfy a set of constraints.
Reverser Core. The reverser core contains the high-level
code that uses the solver and runner to automatically reverse-
engineer a given instruction encoding. It implements the al-
gorithm described in Algorithm 2 alongside different opti-



Table 1: Overview of operations used by InstrSem to construct
candidate output functions. If two expressions of different
bitwidth are combined an additional sign- or zero-extension
is added to the smaller expression.

Kind Operations

Primitive register, immediate
Arithmetic addition, subtraction, multiplication,

division, modulo
Logic and, or, xor, unary not
Unary extraction of least-significant 2n bytes

Conditions equals, not equals, less than, negation

mizations to overcome challenges outlined in Section 3.5 and
speed up the reverse-engineering process.
ISA Model. For each architecture, the ISA must be defined
and passed to the reverser. This definition contains register
names, sizes, constraints, and generic information such as con-
straints on canonical addresses. Further, this model describes
how immediates and registers can be encoded in an instruction
bitstring. This information is required to create random archi-
tectural states that conform to the architecture’s constraints,
to interface with the architecture-dependent runner, and to
generalize encodings to instruction semantics.
Workflow. The interactions between the components are
visualized in Figure 1. The reverser is instantiated with an
ISA model and an instruction encoding to reverse. It then uses
the runner to collect architectural states for multiple partially
random inputs the solver chooses. Then, the solver is queried
to obtain output functions for registers and memory values O
that the encoding modifies. If functions fo for all changing
outputs o ∈ O can be recovered, the encoding semantics S =
{(o, fo)|o ∈ O} are reported.

4.2 Clusterer

Once the reverser finds the formal semantics for an instruc-
tion encoding, the clusterer is invoked to generalize the single
encoding to an instruction, implementing a variant of the algo-
rithm described in Algorithm 4 in Appendix A. The clusterer
is depicted in Figure 2. It detects possible bits that can encode
registers used in the instruction encoding according to the ISA
model. By mutating these bits to encode a different register
and replacing the register in the encoding semantics, the clus-
terer obtains a new encoding and new predicted semantics.
Then, the clusterer runs this modified encoding, gathers the
resulting architectural state from the runner, and verifies that
the semantics match the predicted semantics. If the predicted
semantics are correct for 8 replacement registers, the clusterer
assumes the bits actually encode the register and generalizes
the instruction encoding. Immediates are detected and general-
ized similarly. However, the encoded bits do not need to match
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Figure 2: Overview of InstrSem’s clustering: The clusterer
is instantiated with an architecture-specific ISA model and
runner. Given an instruction encoding and encoding seman-
tics recovered by the reverser, the clusterer generalizes the
encoding semantics to instruction semantics describing how
registers (reg_a) and immediates (val_a) are encoded and
the semantics of the instruction.

the immediate used in the semantics exactly. Instead, a possi-
ble left-shift, sign-extension, or off-by-one value is allowed
by default. Additionally, architecture-dependent immediate
encodings like immediates split into multiple bitstrings can
be defined. By locating possible encodings of registers and
immediates and verifying them, the clusterer can generalize
the encoding semantics S into instruction semantics E that
can be instantiated for multiple instruction encodings.

4.3 Challenges
InstrSem addresses the practical challenges (cf. Section 3.5).
Challenge 1: Working with Memory. Instructions may
operate on memory, but modeling the entire address space
is impractical. During analysis, InstrSem identifies memory
accesses by capturing segmentation faults and treats memory
locations as register-like pairs (address and value).

To identify the base address of memory mappings, a signal
handler is installed that records the crashing address on a seg-
mentation fault. This address can then be treated as an output
variable and an output function for it can be inferred. To infer
the function, random input states and the corresponding seg-
mentation fault address are collected using the runner. Then,
fcrash_address is learned by the solver from these samples, and
a mapping can be created. We treat mappings as two registers:
raddr containing the address and rval containing the value. raddr
is constrained such that raddr = fcrash_addr(A) must be true for
each initial architectural state A. raddr must further contain an
address that the userspace runner can map.

On some platforms, the signal handler is only provided
with a segfault address if the address is canonical. Other-
wise, ‘0’ is provided to the signal handler. In such cases, the
bit-width of values that may be placed in registers when ran-
domly sampling them is constrained to fewer and fewer bits
until enough samples with non-zero segfault addresses are
collected. These constraints can be removed once fcrash_addr is



known, since raddr is itself constrained to contain a canonical
address, which implicitly constrains the values of registers
affecting fcrash_addr.

The bit-width of rval is initially set to a high value that ex-
ceeds all reasonable memory operations. Further, the mapping
is initially mapped with read, write, and execute permissions.
The actually required permissions are systematically inferred
by changing the permissions and observing segmentation
faults. If the permission contains write permissions, the write
bit-width is determined by observing the maximum number
of bits in rval that change when executing the instruction
encoding under random inputs. If the permission contains
read permissions, the read bit-width is determined by sam-
pling the same states but flipping bit i of rval and observing
whether the state after execution changes. The maximum i
that induces changes is the read bit-width. If the permission
contains execute permissions, the execute bit-width is set
to a platform-dependent fixed value, and rval is fixed to an
architecture-specific undefined instruction encoding that leads
to an illegal instruction exception. Finally, rval’s bit-width is
set to the maximum of the read, write, and execute bit-width.

With raddr constrained to the mapping’s address, rval set to
the correct bit-width, and the required mapping protection
determined, the memory mapping can be added. For the re-
mainder of the solving code, raddr and rval are treated like
any other register. Only the runner is aware of the memory
mapping. Before execution, the runner creates a mapping
with raddr as address and rval as value and stores the value
after execution in rval. Similarly, an implicit mapping with the
pc (program counter) register as address and the instruction
encoding under test as value is always created.
Challenge 2: Collecting Noise-free Samples. Our approach
relies on the execution of instruction encodings under ar-
bitrary input states A, i.e., arbitrary memory mappings and
register values, and the collection of the state A′ after execu-
tion. Thus, program execution must not be influenced by other
memory mappings, i.e., the full initial state can be prepared,
and the full resulting state can be recovered.

To recover the state, we use Linux signal handling. On each
tested platform, all register values (including vector registers)
and required information about signals are passed to the signal
handler. To reduce the influence of uncontrolled mappings,
our runner is a statically linked binary with a single link-time-
controlled base address for code, data, and stack. The code
does not use the C standard library but instead directly invokes
the syscalls for signal handling, memory mapping, and I/O
operations. This removes the need for a heap and enables our
code to use reserved registers. This further allows mapping the
entire code and data segment read-only during instruction ex-
ecution to protect the framework from modifications through
executed encodings. Only the signal-handling stack needs to
be mapped as writable, but information to this stack is only
written after the tested encoding is executed and can thus not
be modified by the encoding under test. Most of this code

can be implemented as a platform-independent runner. Only
syscall numbers, registers, a way to extract register values
during signal handling, and a way to set register values from
memory must be implemented per platform. Additionally,
the registers, including constraints, bit-width, and possible
encodings, must be modeled per platform using Python code.
Challenge 3: Efficiently Computing and Checking the Set
of Output Functions. An easy way of of computing a set of
possible output function is to define a set of simple expres-
sions and mathematical operations and combining them up
to a maximum depth for the resulting tree. However, suppose
the simple expressions contain all possible immediate values
up to a certain bit-width and all possible register and mem-
ory values. In that case, the search space quickly becomes
infeasible to handle. Moreover, it fails to cover many common
operations, such as branches with large immediate values as
offset. InstrSem employs multiple optimizations to reduce the
search space and traverse it efficiently.

Before solving for functions or constraints, InstrSem iden-
tifies all registers that influence the output being solved. By
doing this, InstrSem can exclude functions that use other reg-
isters from the search. Further, InstrSem uses a symbolic
constant value for an immediate. Then, when a function
f? is checked whether it is an output function for o (i.e.,
f?(x) = R(x, i)[o] holds for any x ∈ A) for a set of input sam-
ples a ∈ {A1,A2, ...,An}, a configurable heuristic is used to
determine how to perform the checking efficiently. If f? does
not contain any symbolic immediates, f? can just be evaluated
for all values of a to check if f?(a) = R(a, i)[o]. If f? contains
exactly one symbolic immediate, f? is instantiated with all
immediates that can reasonably be encoded in the instruction
encoding, leading to f c

? where c is such an immediate. Then,
all f c

? are individually checked whether f c
? (a) = R(a, i)[o]

for collected samples a. If more than one symbolic imme-
diate is used in f?, we use the z3 constraint solver to de-
termine whether a value for all immediates exists such that
f c1,...,cn
? (a) = R(a, i)[o] for all a where c1, ...,cn are the values

of the immediates used in the function that must all come
from the set of reasonably encodable immediates for the in-
struction encoding. If any of the above methods determine
that f? (or f c

? or f c1,...,cn
? if symbolic immediates are used) cor-

rectly computes R(a, i)[o], we use f? as the output function
for o. Constraint solving can be deactivated to trade coverage
of F for performance.

To enumerate f?, InstrSem constructs binary trees of ex-
pressions with a configurable maximum depth. The primitive
values that can be used are either a symbolic immediate or any
of the registers determined as input, and the operations are
any from the default set of arithmetic, logic, and unary opera-
tions (Table 1). These operations are provided as z3 BitVector
expression and Python functions for optimized evaluation.
Further, if two registers of different sizes are combined in an
operation, the smaller register can be sign- or zero-extended
to match the bigger bit-width. If the final output is smaller



than the target register, the value can also be extended. If it
is bigger, it is truncated to match the target register. Using
the method described above, InstrSem can reasonably iter-
ate and check functions with a syntax tree depth up to three.
For an output with two input registers a and b as well as an
output register x of the same size, InstrSem generates three
expressions for depth 1: a, b, and immediate. For depth 2, the
number of expressions grows to 90, and for depth 3 to 81 000.

In general, the number of expressions for depth d can be
approximated as expr(1) = ins+ 1 with “ins” denoting the
number of input variables and expr(n) = expr(n− 1)2 ∗ k
where k is the number of possible binary operations. Since
this does not take unary negation and possible sign- or zero-
extensions into account, this is a slight underapproximation.
Still, expr(4) is already 160 000 000 for ins = 1 and k = 10.
Thus, InstrSem can only feasibly recover semantics for an
output that can be represented using a function f? with a
syntax tree depth below 4 directly.
Challenge 4: Dealing with Conditional Semantics. Some
instructions, such as conditional branches, rely on conditional
semantics. While they can be represented with the operations
outlined in Challenge 3, the resulting required syntax trees
have greater depth as they must encode the condition and both
possible outcomes. Since syntax trees with depths greater than
3 are infeasible to enumerate, InstrSem includes an additional
optimization to deal with conditional semantics.

InstrSem splits output samples into two classes if solving
fails, using one of the following simple heuristics: (i) The
output value matches a specific input value in at least 2 % but
no more than 98 % of samples and (ii) there are exactly two
different output values. The first heuristic detects conditional
semantics in which one case directly uses an input value, such
as conditional branches, in which the memory address of the
mapping is used in case a branch is taken. The second heuris-
tic targets conditional semantics where both cases produce a
fixed output value. For instance, instructions setting an output
register to 0 or 1 depending on a condition. When a split is
performed, the solver finds a constraint on inputs that matches
the split. Constraints are enumerated and checked similar to
output functions. Constraints are built by combining up to two
possible output functions with (in)equality operators (Condi-
tions in Table 1). For both sides of the split, the constraint (or
negated constraint) is added to the architectural input state
generation, and the reverser is invoked recursively. If the con-
figurable recursion depth (i.e., number of nested conditions)
is exceeded, the reverser aborts.

If semantics for both cases are found, the constraint and
the resulting semantics are recorded. Importantly, conditional
splitting is only performed for outputs that cannot be solved
otherwise. Thus, output functions for some outputs are only
reversed once and not in each split. For example, the output
of InstrSem for a conditional branch is

1 mem_addr = (pc + 18640)
2 if ($a0 < $a1) pc = mem_addr else pc = (pc + 4)

InstrSem determines that the output value of pc matches a
specific input value, namely mem_addr, for greater than 2 %
but no more than 98 % of cases. Thus, the inputs are split
accordingly. Then, InstrSem determines that the condition
$a0 < $a1 describes this split. When recursively solving
with this condition applied when sampling input architectural
states, the output function for pc can now be recovered as
mem_addr. When recursively solving with the negation of the
condition (i.e., ¬($a0 < $a1)) applied when sampling input
states, the output function for pc is recovered as pc + 4.
Challenge 5: Providing a Good Distribution. When creat-
ing random architectural states as input, the performance of
the algorithm outlined in Algorithm 2 strongly depends on
the provided distribution. This distribution must cover cor-
ner cases to distinguish potential output functions to provide
correct results. While at first glance, most mathematical op-
erations we provide are easily distinguishable when using
random inputs (e.g., the chance that a division produces a
different output than a multiplication is high), some corner
cases might be hard to distinguish. For instance, the two op-
erations r1 >> r2 (right shift of register r1 by the unsigned
value stored in register r2) and r1⊕r1 (register r1 XORed with
itself) likely both yield ‘0’ if sampling is performed uniformly
at random over a 64-bit space even with 1 000 000 samples.
This is the case since sampling r2 < 64 is unlikely for a 64-bit
uniform distribution. Similarly, the conditions r1 ≤ r2 and
r1 < r2 are only distinguishable if r1 = r2 which is unlikely
with uniformly random sampling. Thus, for each architectural
input state sample, InstrSem creates a list of (i) 3 uniformly
random values to provide entropy to the samples, (ii) 6 values
uniformly randomly chosen from immediates that may be
encoded in the instruction encoding to trigger corner cases
of instructions using immediates, and (iii) 0, 1, -1, and the
maximum signed integer value. Then, each register and mem-
ory value is chosen uniformly at random from this list and
adjusted to the correct bit-width. Since this initial selection of
values may violate some constraints applied during architec-
tural input state sampling, an additional post-processing step
is used. This post-processing step uses z3 to re-assign some
register and memory values to fulfill all required constraints
while trying to maximize the number of registers and memory
values that are kept random. The random architectural input
state sampling can trigger corner cases while also allowing for
enough entropy to create a large number of distinct samples.
Challenge 6: Dealing with SIMD and Partial Register
Operands. Many ISAs support instructions working with
smaller operands than the register size. The result is then sign-
or zero-extended to the register size. If the initial solving fails,
InstrSem detects the output size, and if it is smaller than the
register size, it tries solving again while limiting the operand
and output sizes. Similarly, SIMD instructions perform the
same operation on multiple data operands, often treating a
single register as multiple values. InstrSem tries to detect
SIMD operations if initial solving fails. It splits registers into



smaller pseudo-registers, trying to solve for a single operation
that produces correct results on all pseudo-registers.

5 Evaluation

This section evaluates InstrSem on RV64I (RISC-V) and
LA64 (LoongArch). We measure how accurately and effi-
ciently InstrSem recovers encoding semantics and generalizes
them into instruction semantics. Section 5.1 focuses primarily
on documented instructions for which ground truth is avail-
able. This allows us to quantify the performance of InstrSem
and verify the correctness of the results. Section 5.2 evaluates
InstrSem on the whole LA64 encoding space, showing that it
can characterize undocumented behavior.

5.1 Coverage and Correctness on RV64I
The RV64I base ISA contains 38 instructions that all 64-bit
RISC-V CPUs must implement. We evaluate InstrSem on a
single instance of each encoding using QEMU version 9.2.
The reverser is provided with an ISA model describing register
sizes, how registers and immediates may be encoded in an
instruction bitstring, and constraints.
Methodology. We execute InstrSem on a single instance
of each documented instruction in the RV64 integer instruc-
tion set. For each instruction encoding, the reverser attempts
to synthesize semantics from randomized input-output sam-
ples. If successful, the clusterer generalizes to instruction
semantics. We verify correctness by comparing recovered
semantics against the official RISC-V specification. If the
instruction encoding is correctly reversed and clustered, we
mark the instruction as correctly reversed. Finally, we report
the percentage of the instruction space that is correctly reverse-
engineered. Instructions that contain semantics not modeled
by InstrSem, such as memory fences, and instructions where
semantics for not all outputs can be recovered automatically,
are counted as incorrectly reversed.

We first execute InstrSem with samples set to 500 and depth
set to 2. Samples describes the amount of random architectural
input and corresponding output states InstrSem should collect
whenever recovering an output function or constraint. depth
limits the depth of the syntax trees of possible output functions
and constraints. For instructions that are not recovered, we
rerun InstrSem again in a first step with samples increased
to 25 000, and in a second step, the depth is increased to
3. This setup also demonstrates that InstrSem can be used
incrementally, quickly recovering simple instructions while
spending more resources on complex instructions.
Results. On an AMD Ryzen 7 5700, the RISC-V runner
of InstrSem can execute 8791 instruction encodings per sec-
ond. When randomizing each input state without additional
constraints, the runner achieves 6579 encodings per second.
With the initial settings, InstrSem correctly recovers and clus-
ters 28 of the 38 instructions that make up 176 390 144 of

193 265 667 (91.27 %) of instruction encodings. InstrSem
takes, on average, 261.06 s to fully reverse and cluster an in-
struction. Of this time, 257.97 s are spent collecting samples.
Thus, InstrSem is entirely bottlenecked by sample collection.
The execution speed of the runner does not cause the sam-
pling bottleneck, but generating random architectural states
that fulfill all required constraints.

Two instructions, slti (set less than immediate) and sltiu
(set less than immediate unsigned), rely on sampling input
states containing the encoded immediate in a specific register
to successfully reverse and cluster the semantics correctly.
In Challenge 5, we describe how such immediates are gener-
ated. However, since InstrSem reports 9187 possible distinct
immediates for the provided slt instruction encoding, 500
samples do not suffice to generate the correct immediate or
an off-by-one value which would also work.

When increasing the number of samples from 500 to
25 000, the runtime of slti and sltiu increases to roughly
4270.03 s, but InstrSem can successfully reverse and gen-
eralize them, leading to an additional 8 388 608 individual
instruction encodings with known semantics.

For instructions that could not be recovered, we run In-
strSem with depth set to 3. With this change, InstrSem can
additionally recover the semantics of 3 instructions that make
up 65 536 encodings: sll (shift left logical), srl (shift right
logical), and jalr (jump and link register). The shift instruc-
tions only use the least significant 6-bit of the register operand
as shift value, while the shift primitive in InstrSem uses the
whole register. Thus, the additional depth is required to limit
the register bit-width with an additional modulo or logical
and operation. For jalr, the addresses reported to the signal
handler are aligned to 2 B. This address is not relative to the
pc register, which is aligned to 2 B by default, but an arbitrary
register that can contain unaligned values. Thus, the additional
depth is required for an additional operation aligning the ad-
dress. As the alignment operation recovered by InstrSem only
works for even immediate values, the instruction recovered by
InstrSem is missing one variable immediate bit. If we execute
InstrSem again on jalr with an odd immediate, InstrSem re-
covers instruction semantics for the remaining jalr instruction
encodings with odd immediates. Together, both encodings
cover the full jalr instruction semantics.

Four instructions (ebreak, ecall, fence, and pause) are re-
covered insufficiently as their semantics are not part of the
model. While InstrSem recovers most of them to the capabil-
ities of its model (e.g., fences are recovered equivalently to
nops, since they only affect the modelled program counter),
we mark them as incorrectly recovered since the recovered
semantics do not cover the full instruction semantics.

Appendix B summarizes the instructions that InstrSem
can recover without manual effort, the parameters used to
recover them, and the total runtime for successful recoveries.
InstrSem uncovers 33 of 38 instructions defining 189 038 592
of 193 265 667 (97.81 %) of all valid instruction encodings.
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Figure 3: Coverage of the 32-bit LA64 encoding space over
time with clustering instructions enabled. Time is measured
after filtering undefined instruction encodings.

5.2 Full LA64 Instruction Set

To evaluate InstrSem on a more complex ISA, we analyze
the entire 32-bit instruction encoding space of LoongArch
LA64. We use a hybrid QEMU and Loongson 3A5000 setup
to compare emulator and hardware behavior.
Setup. We first determine the set of used instruction en-
codings with an approach similar to Armshaker [32]: We
execute every possible 4-byte sequence as an instruction
encoding and observe whether an invalid instruction signal
for this encoding is received. For QEMU, we end up with
1 422 536 156 valid encodings, while the Loongson 3A5000
supports 1 464 902 445 encodings, 42 366 289 more than the
emulator. We run InstrSem on these valid encodings, updat-
ing the input set every time instruction semantics are recov-
ered. For QEMU, we run the evaluation on an AMD Ryzen
9 7950X3D with 64 parallel processes. On the Loongson
3A5000, we run 8 parallel processes. The depth parameter of
InstrSem is set to 2 and samples is set to 500.
Correctness. InstrSem successfully recovers semantics for
873 instructions. After filtering out redundant instructions,
i.e., instructions fully contained within another and those with
5 or fewer variable bits, 136 instructions remain. We filter out
instructions with 5 or fewer variable bits, as they are primarily
special cases of instructions that could not be uncovered. The
remaining instructions cover 1 009 055 744 of 1 009 080 152
analyzed instruction encodings. Manually analyzing these
instructions reveals that all semantics of documented instruc-
tions are recovered correctly with respect to the ISA model.
Additionally, semantics for undocumented instructions that
we cannot verify against the documentation are unveiled. They
are further discussed in Section 6.2.
Runtime. Figure 3 shows the percentage of instruction encod-
ings InstrSem covers over time when clustering instructions
is enabled. InstrSem starts at a coverage of 66 % as we pre-
filter unused instruction encodings. Initially, InstrSem has
a higher chance of reverse-engineering an instruction com-
prising many encodings. Thus, InstrSem covers additional
23.54 % of the encoding space over the first hour, while only
1.1 % are covered in the following 9 h.
Impact of Clustering. Without clustering, the portion of cov-
ered instruction encodings grows linearly at an average rate
of 6.55 encodings per minute. Covering the same 23.54 % of

the encoding space that can be covered in one hour with clus-
tering enabled would take approximately 29 367 years. This
underlines the performance gain from clustering instructions.

6 Case Studies

In this section, we present case studies that demonstrate In-
strSem’s ability to recover and generalize semantics for undoc-
umented instructions on RV64I (RISC-V), AArch64 (Arm),
and LA64 (LoongArch) CPUs. It further demonstrates the
modularity of InstrSem and its applicability to CISC and
unconventional ISAs. Section 6.1 shows that InstrSem can
recover the semantics of the unprivileged GhostWrite instruc-
tion. Section 6.2 describes our findings for the LA64 instruc-
tion set and the corresponding QEMU emulator. Section 6.3
outlines an undocumented instruction encoding on Apple M-
Series CPUs found by InstrSem. Section 6.4 uses InstrSem
to reverse-engineer multiple undocumented instructions on
the SiFive P550 RISC-V CPU. Section 6.5 demonstrates that
InstrSem can handle CISC ISAs while Section 6.6 shows it
can handle unconventional ISAs. These examples highlight its
real-world applicability across different ISAs, vendor-specific
extensions, ISA inconsistencies, and emulator bugs.

6.1 Reversing GhostWrite
To demonstrate InstrSem’s adaptability to real-world CPU
vulnerabilities, we use it to reverse engineer the semantics of
the GhostWrite CPU vulnerability on the T-Head XuanTie
C910 RISC-V CPU. This vulnerability allows an attacker to
write arbitrary bytes to arbitrary physical memory locations
from unprivileged code. At its core, GhostWrite is an invalid
encoding of strided vector-store instructions, which the C910
illegally decodes and executes.
Setup. As InstrSem is designed to only capture virtual mem-
ory changes, GhostWrite is invisible to InstrSem. Therefore,
we extend InstrSem’s RISC-V runner with physical memory
support. To keep the changes to the runner small, we map
a small reserved physical memory range into the virtual ad-
dress space of the runner, by mapping /dev/mem via mmap.
As GhostWrite is able to write arbitrary physical memory,
running GhostWrite on uncontrolled physical memory might
crash the system, e.g., by overwriting kernel code. For this
reason we also constrain the values encoded into the regis-
ters to this fixed and reserved physical memory region using
InstrSem’s built-in constraint functionality. In total, the modi-
fications amount to less than 50 lines of code.
Results. With these minimal modifications InstrSem success-
fully reverse-engineers the correct semantics of GhostWrite,
generalizing from a single encoding into an instruction cover-
ing 65 536 encodings (Listing 1). The analysis automatically
infers semantics, ignored encoding bits, and encoding bits for
registers, substantially reducing manual effort. This demon-
strates that InstrSem can effectively analyze existing security



issues and can be extended with minimal effort for future
vulnerability analysis.

6.2 LA64 Instruction Set

On the LA64, InstrSem discovers undocumented instructions,
inconsistencies between hardware CPUs and the QEMU em-
ulator, and bugs in QEMU.
Undocumented Vector Instructions. Amongst the instruc-
tions recovered by InstrSem are 67 vector instructions. While
the existence of vector instructions is documented, the instruc-
tions are undocumented. The manual is empty and contains
only a note “TBD” [26]. The recovered vector instructions
comprise 128-bit and 256-bit SIMD operations on 8, 16, 32,
64, and 128-bit values. A list of recovered vector instructions
is provided in Appendix C.
Inconsistent Instruction Semantics. For some instructions,
different semantics are recovered from QEMU and the Loong-
son 3A5000 CPU. Most 128-bit vector operations zero the
upper 128 bits of the vector register on QEMU, while the
operation is applied to the full 256-bit register on hardware.
QEMU-only Instructions and Crashes. InstrSem recovers
761 856 instruction encodings only supported by QEMU and
not by the actual hardware. These encodings set a varying
number of bits of a vector register to 1. Further, InstrSem
finds 49 152 encodings that crash QEMU. For instance, the
encoding 0x73e3a000 triggers an assertion regardless of the
architectural input state (“[...] vldi_get_value: code
should not be reached”). All of these crashes are con-
trolled termination due to assertion errors and are not ex-
ploitable beyond denial of service. Still, this discovery shows
that there is a blind spot in current research that ISA-agnostic
tools like InstrSem can help to close.
Hardware-only Instructions. InstrSem discovers an undoc-
umented instruction only on the Loongson 3A5000 and not
in QEMU. This instruction stores the most significant byte of
a general-purpose register to memory. The relevant output for
this instruction is listed in Listing 2 in Appendix D.

6.3 Apple Undocumented Instructions

In this case study, we investigate the proprietary Mul53 ex-
tension on Apple M-series CPUs, which is known [27] but
not officially documented. On the Apple M1 and M2, this
extension includes 2 instructions, each containing 1024 in-
struction encodings. The instructions together add a 106-bit
wide SIMD multiply operation to the Apple CPUs. The first
instruction, which is dubbed mul53lo.2d, splits 2 128-bit
vector registers into parts of 64 bit and computes the product
of the 2 registers for each half. The result is then truncated to
53 bit. The second instruction, which is dubbed mul53hi.2d,
multiplies the halves as well, but right-shifts the output by
53 bit, discarding the least significant 53 bit. Again, the output

is truncated to 53 bit. With these two results, the final 2 106-
bit outputs can be constructed by shifting the second result
(high) left by 53 bit and adding the first result (low).

We first use InstrSem to automatically reverse engineer
mul53lo.2d. InstrSem successfully discovers that the instruc-
tion is a SIMD split instruction and fully recovers the instruc-
tion semantics in 15 min. The relevant output of InstrSem
is in Listing 3 in Appendix D. For mul53hi.2d, we set the
width of the vector registers to 53 bit, as the previous run dis-
covers the output truncation to 53 bit. InstrSem successfully
recovers the instruction semantics for the lower half of the
vector registers in 30 min. The relevant output is also con-
tained in Listing 3 in Appendix D. These partial semantics
can easily be expanded to the full-width SIMD split semantics.
We conclude that InstrSem successfully recovers the seman-
tics of a proprietary ARM64 ISA extension, highlighting its
applicability to more complex and custom extensions.

6.4 SiFive P550 Undocumented Instructions

In this case study, we investigate undocumented instructions
discovered on the SiFive P550, one of the fastest RISC-V
CPUs currently available. Previous work reported over 40 mil-
lion undocumented instruction encodings on this CPU [33]
without recovering their semantics. We use InstrSem to
reverse-engineer their semantics.
Methodology. We randomly pick one of the undocumented
instruction encodings and use InstrSem to try to recover the
semantics. If InstrSem recovers the semantics, we use its
clustering mechanics to recover the more general instruction
semantics. We then remove all encodings that match this
recovered instruction from the list of encodings to still reverse.
We run the experiment for 96 h on a single CPU core.
Setup. We use a HiFive Premier P550 running SiFive Free-
domUSDK to run InstrSem’s client remotely. We use TCP to
connect it to a machine with an AMD Ryzen 9 7940HS run-
ning Ubuntu 22.04, which runs InstrSem. The remote setup is
required as Z3 is unavailable on the RISC-V machine.
Results. InstrSem recovers the semantics for 305 instructions
in 96 h, covering 20 381 696 instruction encodings. A large
number of the instructions are signed maximum and minimum
instructions. They include register maximum and minimum
semantics, and ones where an immediate is used instead of
a register. The relevant output of InstrSem when recovering
such instructions is in Listing 4 in Appendix D. InstrSem
further verifies the suspicion of previous work [33] that some
of the encodings encode immediate shift-right instructions.

The instructions partially come from RISC-V’s basic bit
manipulation extension (Zbb). This extension includes signed
maximum and minimum operations, though the encoding
differs. While the official Zbb extension defines the signed
maximum with opcode 0x33, we find instructions with op-
code 0xb. Further, this extension does not include signed
maximum or minimum operations with an immediate.



We conclude that InstrSem can also recover the semantics
of more complex instructions like minimum or maximum.
Further, InstrSem’s clustering stage efficiently recovers se-
mantics at scale, a tedious task to do manually.

6.5 Partial x86-64
In the previous case studies, we focused on fixed-length RISC
instruction sets. However, InstrSem is not limited to fixed-
length or RISC instructions. To demonstrate this, we imple-
ment a partial x86-64 backend including only 64-bit integer
registers (rax, rbx, rcx, rdx, rdi, rsi, rbp, rsp, and r8-r15)
and the program counter (rip). This backend amounts to less
than 200 lines of code, more than 100 of which are used for a
C library defining types, syscalls, and signal handling structs.
Setup. We disassemble the GNU libc standard library and
supply instructions with the 20 most common mnemonics.
Results. Out of the 20 mnemonics, InstrSem correctly finds
the semantics and generalizes them for 13 of them. The se-
mantics of 5 more instructions rely on flags which we do
not model in the minimal backend. Still, they are recovered
correctly to the capabilities of the model (i.e., jne always
jumps while je is a nop). InstrSem only fails for two instruc-
tions: ret, and call. Both cases fail because they perform
two memory accesses (one to store or retrieve the return ad-
dress from stack and one fetch at the branch destination). This
is currently unsupported by InstrSem but can be extended
since InstrSem correctly identifies size and address of the
first memory access. For x86, InstrSem falls short compared
to tools like LibLisa [7] that are specifically built to infer
x86 semantics. Still, InstrSem can handle a decent amount of
x86-64 instructions even with a minimal backend.

6.6 Logitech Macros
To demonstrate InstrSem can also handle unconventional
ISAs, we implemented a backend for Logitech’s Macro lan-
guage [34]. This macro language implements a variable length
instruction set running on keyboards and mouses. For ease of
implementation and faster execution, we wrap an emulator of
this macro language instead of actual hardware. The wrapping
for the emulator consists of only 75 lines of Python code.

Setup We feed one instruction bitstring per opcode sup-
ported by the emulator. When InstrSem finds semantics and
generalized semantics, we manually check the results.

Results InstrSem can correctly reverse engineer 13 of 15
Logitech macro instructions with respect to its model. One of
these instructions is a delay, recovered as nop, as the delay is
not part of the ISA model. For two instructions, the generaliza-
tion step fails, as the immediate is interpreted as an exponent,
i.e., 2immediate, which InstrSem’s default constant iterator does
not support. We confirm these instructions are correctly gen-
eralized with a custom constant iterator implementing such
encodings. For the two opcodes we count as incorrect, the

semantics are correct for the supplied instruction-bitstring,
but do not reflect the whole opcode semantics. Although the
Logitech macro language differs from traditional ISAs, In-
strSem manages to reverse-engineer a significant portion of
its instructions out-of-the-box with a minimal backend.

7 Related Work

Finding Undocumented Instructions. Strupe et al. [32]
propose Armshaker, a tool to find undocumented instruction
encodings in the ARMv8 architecture. It scans the entire en-
coding space, logging encodings that fail to disassemble but
do not cause a SIGILL on execution. Although this tool did
not uncover undocumented instructions, it discovered soft-
ware bugs in Linux and QEMU. Dofferhoff et al. [10] use a
similar technique on ARMv8 and RISC-V, successfully de-
tecting an undocumented instruction on the Freedom U540
RISC-V CPU. Sandsifter [11] is a popular fuzzing tool for
discovering undocumented instruction encodings on x86. In-
stead of exhaustively searching the encoding space, it uses a
custom search algorithm that considers the length of a gener-
ated encodings. Sandsifter discovered undocumented instruc-
tions on CPUs by both Intel and AMD, as well as a series
of errata. Later works improve upon Sandsifter’s approach,
further reducing the runtime and size of the relevant search
space [23,39]. These works are orthogonal, as we do not focus
on finding instruction encodings but inferring their semantics.
Automatically Unveiling Instruction Semantics. Godefroid
and Taly [18] propose a template-based program-synthesis
technique to generate semantics for x86 instructions. Their
approach successfully synthesizes the semantics of 534 in-
struction variants. Heule et al. [21] propose Strata, which im-
proves upon this approach by employing stratification. This
allows it to synthesize the semantics of more complicated
instructions from simpler ones, eliminating the effort of hand-
crafting function templates. Strata successfully recovers the
formal semantics of 1905 x86-64 instruction variants, cov-
ering 466 distinct mnemonics. Dasgupta et al. [8] manually
extend these results to cover the complete x86-64 user-mode
ISA. Recently, Craaijo et al. published libLISA [7], which
does not require a disassembler and can find the semantics
of x86-64 instructions fully autonomously. While the general
approach is portable to other architectures, these works rely
on architecture-specific hand-written templates or complex
execution environments. Thus, they are not generic or easily
portable to other architectures.

8 Limitations

8.1 Design
ISA State modelling. Our approach is fundamentally limited
by the supplied ISA model: Instructions that rely on inputs
which are not part of the ISA model cannot be fully reversed.



For instance, instructions that only execute in a privileged
context cannot be correctly reversed if the privilege level is
not part of the ISA model. Similarly, instructions that write to
unknown outputs such as unmodeled registers are only par-
tially recovered. Adjusting the ISA model to accommodate
such cases is theoretically possible, but practically infeasible
for most real-world ISAs. For instance, parts of the architec-
tural state can often not be arbitrarily adjusted and not all
parts of the state can be read directly. Additionally, parts such
as some model-specific registers might not be documented,
making them impossible to model.
Incompleteness. Our approach requires the initial set of pos-
sible output functions F to contain the actual output function
for each output. If this is not the case, incorrect semantics can
be recovered. For our relaxed algorithm, an incorrect output
function f might be recovered even though a correct func-
tion is part of F , as this approach does not cover the whole
input space of each output function. This is computationally
infeasible and thus a limitation of all black-box approaches.

8.2 Implementation

Complex Semantics. InstrSem is constrained by the expres-
siveness of its function synthesis. If an instruction’s behav-
ior cannot be described by the current operation set (e.g.,
population count, floating-point arithmetic), it cannot be in-
ferred. Adding floating-point support would require modeling
floating-point registers, rounding modes, and IEEE seman-
tics as bit vector transformations—a nontrivial but feasible
extension. Additionally, InstrSem is currently limited to in-
structions that perform at most one memory access.
Handling of Non-determinism. In its default configuration,
non-deterministic outputs cause InstrSem to fail when recov-
ering semantics for that output and consequently fail general-
izing an instruction encoding. Handling of non-deterministic
outputs can be enabled which classifies non-deterministic out-
puts as counter (non-decreasing values), “few values” (only
a few possible values), or randomness (N-bit random output,
with N estimated from the collected samples). While this al-
lows InstrSem to proceed with generalization of instruction se-
mantics, the recovered function might lose information about
the actual output function. For instance, while the output of a
rdcycle instruction is identified as counter, the connection
to the current cycle count is lost.
Instructions Without Visible Side-effects. The semantics of
instructions that have microarchitectural side-effects are not
completely recovered. For instance, prefetch instructions that
only cache data are recovered as nops, even if the architectural
state is fully modeled. While the ISA model can be augmented
with microarchitectural information (e.g., the cache state of a
memory region), these properties must be added manually.
Privileged Execution Modes. InstrSem’s runner is an
userspace executable that relies on Linux syscalls and sig-
nal handling. Thus, it can only collect samples in userspace.

Instructions that only execute in privileged modes cannot
be recovered with the current runner implementation. Deal-
ing with such instructions would require developing a runner
that can execute privileged instructions under arbitrary initial
states and collect the outputs after execution. Since some priv-
ileged instructions cause side effects that are hard to account
for (e.g., resetting the CPU), this is a non-trivial endeavour.
System Registers. The current runner implementation does
not support adjusting or capturing system registers that might
have an influence on instruction execution or might be modi-
fied by instructions. For instance, instructions that are disabled
unless a bit in a system register is set cannot be recovered by
the current implementation. While it is possible to add certain
system registers to the architectural state and use a kernel
module to write and read them, this approach would require
knowing which system registers are safe to arbitrarily adjust.

9 Discussion

Extensibility of InstrSem. InstrSem is a modular framework
that can be extended to other architectures. To implement a
new architecture, it only requires a model of the architectural
state and a binary capable of executing instruction encodings
with arbitrary input state and collecting the output state. For
the latter, a platform-independent C implementation is pro-
vided that just needs small code snippets describing platform-
specific syscall numbers, syscall wrappers, a way to load all
registers from memory, and a way to extract all register con-
tents during signal handling. Memory mappings and runtime
isolation are written in a platform-independent way using
Linux syscalls. The base set of mathematical formulas used in
InstrSem can easily be extended to enable reversing of more
complex instructions, e.g., instructions that count the number
of set bits. This is valuable when encountering an instruction
encoding that InstrSem cannot automatically reverse.
Scalability to Complex ISAs. InstrSem scales with the anal-
ysis goal. Modeling a large portion of an ISA, including priv-
ilege modes and system registers, is complex but feasible if
required. For instance, the privilege level can be represented
as an additional state variable, and the runner can be extended
to execute encodings and capture the full architectural state
for different privilege levels depending on the initial value
of this variable. In many scenarios, a targeted analysis is suf-
ficient and significantly simpler. When focusing on specific
instruction classes, only the components of the ISA that in-
fluence their behavior must be modeled. Finally, InstrSem
accepts arbitrary-length byte streams as input for the tested
encoding. As a consequence, variable-length instruction en-
codings and even short instruction streams can be analyzed
without additional machinery, enabling support for both RISC-
and CISC-style ISAs out of the box.
Complex Instruction Semantics. Even complex instructions
often decompose into simpler per-output functions, which In-
strSem can infer efficiently. If not all output functions of a



complex instruction can be fully recovered, InstrSem still pro-
vides valuable information such as relevant parts of the input
state that affect the output. Further, InstrSem can aid manual
analysis by collecting input and output samples under arbi-
trary constraints. Once a missing output function is manually
recovered and added to InstrSem, InstrSem can automatically
generalize the encoding into an instruction semantic covering
many encodings, further reducing manual effort.
Using InstrSem for Emulation. The semantics recovered
by InstrSem can emulate instructions out-of-the-box since
semantics map an arbitrary input state to the correct output
state. By manually implementing the semantics of complex
instructions such as syscall instructions, InstrSem can build
an emulator for architectures without having to manually
implement semantics for a large portion of the instruction set.
Splitting Sample Collection and Solving. InstrSem is split
between sample collection (runner), semantic inference (re-
verser), and generalization (clusterer). This modularity sup-
ports reuse in different contexts, e.g., running the reverser
locally and collecting samples on a remote target.

10 Conclusion

We presented InstrSem, a fully automated framework for dis-
covering and generalizing instruction semantics across archi-
tectures, including undocumented and proprietary instructions.
By combining black-box execution, semantic inference, and
encoding generalization, InstrSem bridges the gap between
binary-level execution and formal instruction models. Our
evaluation on RISC-V, ARM, and LA64 shows that InstrSem
recovers correct semantics for most documented instructions
and reveals undocumented behavior in real-world CPUs and
emulators. InstrSem provides a scalable and modular foun-
dation for reverse engineering, emulation, and CPU security
analysis in an era of increasingly opaque instruction sets.

Ethical Considerations

Affected Stakeholders

Our research affects CPU designers, designers of other soft-
ware and hardware that rely on ISAs, researchers, and main-
tainers and users of qemu-loongarch.

How Stakeholders are impacted

CPU designers. CPU designers are affected because our
research simplifies the analysis of ISAs implemented on their
hardware, including but not limited to undocumented instruc-
tions. On the downside, our research can simplify the analysis
of proprietary instructions, potentially aiding intellectual prop-
erty theft. On the upside, our research can enable additional
testing to ensure implementations behave as expected.

Designers of other software and hardware that rely on
ISAs. As not only CPUs rely on ISAs or similar components
that can be modeled and analyzed with InstrSem, our research
potentially also affects designers of other hardware, such as
GPUs or keyboards that rely on macros, as well as software
such as VM-based obfuscation techniques. These stakehold-
ers are affected in a similar manner to CPU designers.
Researchers. Researchers are affected by our work as it
simplifies and partially automates analysis of ISAs or specific
instructions. Our research likely reduces the manual effort
required.
Maintainers and users of qemu-loongarch. Since our re-
search discovers several bugs in qemu-loongarch, maintain-
ers and users are affected. On the negative side, maintainers
have to spend time addressing and fixing the identified bugs.
Further, malicious parties could exploit bugs discovered in
our research to perform denial-of-service attacks against af-
fected qemu-loongarch versions, potentially affecting users
of qemu-loongarch. On the positive side, outlining these im-
plementation bugs lead to fixes that make qemu-loongarch
more secure and correct.
Mitigations taken for negative impacts to stakeholders.
We reported the QEMU crashes to the qemu-loongarch main-
tainers alongside detailed root-cause analysis and patches.
This ensured the issues were quickly fixed and the effort of
qemu-loongarch maintainers was minimized.

How the decision to both do and publish the research were
reached

We weighed the possible negative impact of aiding intellectual
property theft against the positive impact our research might
have to simplify future security research. We believe the im-
pact to intellectual property theft of our research to be low:
While InstrSem can simplify manual reverse-engineering, a
sufficient monetary incentive would also overcome the ad-
ditional manual effort required. On the other hand, finding
possible security issues with our research, responsibly dis-
closing them, and aiding future research would lead to greater
security of CPUs. Thus, we decided to conduct our research.

While publishing our research and open-sourcing InstrSem
might aid malicious actors, we believe the positive impact
it will have by aiding research on CPU security outweighs
the negatives. Withholding knowledge about architecturally-
reachable behavior disproportionately advantages attackers
while limiting defenders, tool builders, and auditors. Our work
does not introduce new instructions or new behavior. It char-
acterizes behavior that already exists on existing CPUs. The
presence of undocumented but executable instructions jus-
tifies systematic analysis, as these instructions form part of
the effective attack surface. Thus, we think publishing our
research is ethical.



Open Science

We include our prototype implementation of InstrSem as arti-
fact. The artifact can be viewed at the following URL:
https://zenodo.org/records/17974657. After down-
load, InstrSem can be executed the following way:
python3 main.py <backend> <instruction>

<port> <instruction bitwidth>.
• <backend> can be one of: logitech,
x86_64-socket, riscv64-socket, aarch64-socket,
aarch64-vector-socket, and loongarch64-socket.

• <instruction> is target instruction as integer. This num-
ber is converted to bytes using little-endian byteorder. For
instance, 0x1122 yields the bytes [0x22, 0x11].

• <port> should be 0.
• <instruction bitwidth> is the bitwidth of the re-

versed instructions. For instance, the riscv addi x1, x0,
42 instruction (0x02a00093) has a bitwidth of 32.

The artifact further contains a README.md file describing
how to reproduce the claims of the paper.
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A Algorithms

Algorithm 5 and Algorithm 6 show helper algorithms for
encapsulation checks used in Algorithm 3 and Algorithm 4.

Algorithm 5: CheckEncapsulation
Data: Set of encapsulations K, Mapping from

instruction encodings to encoding semantics M
Result: True or False
Result← True;
for i′,sexpected ∈ All_Instructions(K) do

if sexpected ̸= M(i′) then
Result← False;

end
end

B RISC-V Results

For RISC-V, Table 3 shows the instructions that InstrSem can
recover without any manual effort, the parameters used to
recover them, and the total runtime for successful recoveries.

C LA64 Undocumented Vector Instructions

Supplying InstrSem with undocumented instruction encod-
ings yields the undocumented vector instructions listed in
Table 2 when running with qemu-user (Loongarch).

https://github.com/loongson/LoongArch-Documentation/releases/download/2023.04.20/LoongArch-Vol2-v1.00-EN.pdf
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Algorithm 6: CheckEncapsulationRelaxed
Data: Runner R, distribution of architectural states D,

set of encapsulations K, amount of tested
encodings ni, amount of architectural states na

Result: True or False
Result← True ;
for i′,sexpected ← N_Encodings(K) do

for a ∈ N_States(D,na) do
if sexpected ̸= R(a, i′) then

Result← False ;
end

end
end

Table 2: LA64 vector instructions automatically unveiled by
InstrSem. Operand sizes in brackets only apply for 256-bit
operations. reg and imm refer to register and immediate.

Operation Output Size Operand Sizes

add reg 128/256 bit (128), 64, 32, 16, 8
subtract reg 128/256 bit (128), 64, 32, 16, 8
multiply reg 128/256 bit 64, 32, 16, 8
modulo reg 256 bit 64, 32, 16, 8
logical or reg 128/256 bit indistinguishable
logical and reg 128/256 bit indistinguishable
logical xor reg 128/256 bit indistinguishable
add imm 128/256 bit 64, 32, 16, 8
subtract imm 128 bit 32, 16, 8
left shift imm 128/256 bit (128), 64, 32, 16
logical or imm 128/256 bit indistinguishable
logical and imm 128/256 bit indistinguishable
logical xor imm 128/256 bit indistinguishable
load imm 128/256 bit 32, 16, 8

D Sample Outputs

Reversing GhostWrite. InstrSem’s relevant output for the
GhostWrite strided vector-store instruction on the T-Head Xu-
anTie C910 is shown in Listing 1. This instruction stores the
least significant byte of a vector register to physical memory.
Loongson 3A5000-only Instruction. InstrSem’s relevant
output for an undocumented instruction on the Loongson
3A5000 is shown in Listing 2. This instruction stores the most
significant byte of a general-purpose register to memory.
Apple MUL53 Extension. InstrSem’s relevant output for the
proprietary Apple Mul53 extension is shown in Listing 3. For
mul53hi.2d, we fixed the vector register size to 53 bits.
P550 Sample Reversed Instruction. InstrSem’s relevant
output for an undocumented signed maximum instruction on a
SiFive P550 CPU is shown in Listing 4. InstrSem successfully
performs a conditional split and obtains the correct semantics.

Table 3: Overview of RV64I instruction encodings and
whether InstrSem can recover and generalize their semantics.
One instruction encoding for each instruction of RV64I is
used except for jalr, which requires two encodings to uncover
the full semantics. D is the maximum syntax tree depth.

Encoding Time Bits D Samples

add s7, ra, t2 ✓ 7.15 s 15 2 500
addi s10, ra, 0x2a ✓ 12.98 s 22 2 500
and ra, tp, s1 ✓ 8.24 s 15 2 500
andi gp, ra, 0x2a ✓ 13.09 s 22 2 500
auipc tp, 0x2a ✓ 12.51 s 25 2 500
beq s9, ra, 0x2a ✓ 211.74 s 22 2 500
bge ra, sp, 0x2a ✓ 215.56 s 22 2 500
bgeu sp, tp, 0x2a ✓ 245.40 s 22 2 500
blt ra, sp, 0x2a ✓ 213.59 s 22 2 500
bltu gp, sp, 0x2a ✓ 252.76 s 22 2 500
bne tp, ra, 0x2a ✓ 218.24 s 22 2 500
ebreak ✗ 0 2 500
ecall ✗ 0 2 500
fence ✗ 22 2 500
jal tp, 0x2a000 ✓ 184.79 s 25 2 500
jalr sp, ra, 0x29 ✓ 713.91 s 22 3 500
jalr sp, ra, 0x2a ✓ 712.54 s 22 3 500
lb ra, 0x2a(sp) ✓ 870.79 s 22 2 500
lbu ra, 0x2a(tp) ✓ 682.14 s 22 2 500
lh sp, 0x2a(gp) ✓ 928.47 s 22 2 500
lhu ra, 0x2a(gp) ✓ 584.24 s 22 2 500
lui gp, 0x2a ✓ 12.65 s 25 2 500
lw tp, 0x2a(ra) ✓ 796.39 s 22 2 500
or tp, gp, s7 ✓ 8.82 s 15 2 500
ori tp, a0, 0x2a ✓ 14.64 s 22 2 500
pause ✗ 0 2 500
sb sp, 0x2a(ra) ✓ 490.31 s 22 2 500
sh gp, 0x2a(ra) ✓ 462.71 s 22 2 500
sll ra, sp, s3 ✓ 143.61 s 15 3 500
slt tp, a7, a3 ✓ 323.88 s 15 2 500
slti sp, gp, 0x2a ✓ 4283.28 s 22 2 25 000
sltiu ra, gp, 0x2a ✓ 4256.78 s 22 2 25 000
sltu gp, ra, sp ✓ 106.69 s 15 2 500
sra tp, sp, a6 ✗ 15 3 500
srl gp, ra, tp ✓ 140.72 s 15 3 500
sub sp, s8, ra ✓ 6.83 s 15 2 500
sw sp, 0x2a(ra) ✓ 403.87 s 22 2 500
xor ra, gp, tp ✓ 8.01 s 15 2 500
xori sp, ra, 0x2a ✓ 13.14 s 22 2 500



1 flippy bits: [20, 21, 22, 23, 24, 25]
2 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
4 reg_a 4 3 2 1 0
5 reg_b 4 3 2 1 0
6 mem_addr = gpr_b
7 pc = (pc + 0x4)
8 mem_val_out = Truncate(128 to 8, vec_a)

Listing 1: Sample output of InstrSem when reverse-engineering the GhostWrite strided vector-store instruction on the T-Head
XuanTie C910. The instruction stores the least significant byte of a vector register to physical memory. flippy bits indicates
ignored bits in the instruction encoding.

1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
2 0 0 1 0 1 1 1 1 1 0
3 val_a 11 10 9 8 7 6 5 4 3 2 1 0
4 reg_a 4 3 2 1 0
5 reg_b 4 3 2 1 0
6 mem_addr = (gpr_a + const_a)
7 pc = (pc + 0x4)
8 mem_val_out = (gpr_b >> 0x38)

Listing 2: Sample output of InstrSem when reverse-engineering an undocumented instruction on the Loongson 3A5000. The
instruction stores the most significant byte of a general-purpose register to memory.

1 mul53lo.2d:
2 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4 reg_a 4 3 2 1 0
5 reg_b 4 3 2 1 0
6 pc = (pc + 0x4)
7 vec_b = SIMD(128 -> 128, 64, ((vec_b * vec_a) & 0x1fffffffffffff))
8
9 mul53hi.2d:

10 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
12 reg_a 4 3 2 1 0
13 reg_b 4 3 2 1 0
14 pc = (pc + 0x4)
15 vec_b = ((vec_b * vec_a) >> 53)

Listing 3: Relevant output of InstrSem when reverse-engineering the proprietary Apple Mul53 extension. For mul53hi.2d, the
vector register bit-width was fixed to 53 bit.

1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
2 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1
3 reg_a 4 3 2 1 0
4 reg_b 4 3 2 1 0
5 reg_c 4 3 2 1 0
6 pc = (pc + 0x4)
7 if (not (gpr_a <s gpr_c)):
8 gpr_b = gpr_a
9 else:

10 gpr_b = gpr_c

Listing 4: Sample output of InstrSem when reversing an undocumented signed maximum instruction on the SiFive P550.
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